

Ejercicios de practica día 21

Inmersión

Secuencias aritmética y geométrica

1. Probar que la suma de los primeros *n* términos de la secuencia de números pares es:

$$S_n = 2 + 4 + 6 + \cdots + 2n = n(n+1)$$

2. Probar que la suma de los primeros n términos de la secuencia 2, 4, 8, 16, \cdots es:

$$S_n = 2(2^n - 1)$$

3. Demostrar que para todo $n \in \mathbb{N}$,

$$3 + 9 + 27 + \dots + 3^n = \frac{3}{2}(3^n - 1)$$

Teorema del Binomio: $(x + y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$

- 1. ¿Cuál es el coeficiente de x^6 en $(5 + x)^8$?
- 2. ¿Cuál es el coeficiente de x^5 en $(1 + 2x)^6$?
- 3. ¿Cuál es el coeficiente de w^3y^5 en $(w + y)^8$?
- 4. ¿Cuál es el coeficiente de a^3z^9 en $(a+z)^{12}$?
- 5. ¿Cuál es el coeficiente de a^5b^8 en $(b-2a)^{13}$?
- 6. ¿Cuál es el coeficiente de x^6y^5 en $(0.5x y)^{11}$?
- 7. Expandir:

a)
$$(x^2 + 1)^4$$

b)
$$(b + 2y)^5$$

c)
$$(x+2)^6$$

d)
$$(2x - y)^7$$

8. Simplifica:

a)
$$(2 + \sqrt{3})^4$$

c)
$$(1 + \sqrt{7})^5$$

e)
$$(\sqrt{2} + \sqrt{3})^6$$

b)
$$(1 - \sqrt{2})^3$$

d)
$$(4 - \sqrt{6})^5$$

$$f) (\sqrt{2} + \sqrt{5})^5$$