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Abstract. Rotation symmetric Boolean functions were introduced by Pieprzyk and Qu in the late 1990’s.
They showed that these functions are useful, among other things, in the design of fast hashing algorithms with

strong cryptographic properties. The concept of rotation symmetric Boolean functions has been generalized
to a class of functions known as k-rotation Boolean functions, where k divides n and n is the number of

variables of the Boolean function. Analogous to the case of regular rotation symmetric Boolean functions,

a monomial k-rotation Boolean function is called long k-cycle if the number of terms coincides with n/k
and short k-cycle if the number of terms is less than n/k. In this work we characterize short k-cycles by

providing specific generators for them. We also provide a count of short k-cycles.

1. Introduction

Boolean functions are mathematical objects that lie in the intersection of combinatorics and number
theory. These objects have applications to a variety of scientific fields, including, but not limited to, coding
theory, cryptography and information theory. Formally, an n-variable Boolean function is a map from
Fn
2 → F2 where F2 represents the binary field. The set of all n-variable Boolean functions is denoted by Bn.

It is not hard to see that |Bn| = 22
n

.
Every Boolean function f ∈ Bn can be identified with a multi-variable polynomial

(1.1) f(X1, . . . , Xn) =
⊕

a=(a1,...,an)∈Fn
2

λa

n∏
j=1

X
aj

j ,

where λa ∈ F2 for every a ∈ Fn
2 and ⊕ represents addition mod 2. This polynomial is known as the algebraic

normal form (or ANF for short) of the Boolean function f . Since every Boolean function can be identified
with a multi-variable polynomial, it is natural to consider the degree of a Boolean function. The algebraic
degree of f ∈ Bn is the degree of its ANF.

The information of a Boolean function can be recorded in a vector known as its truth table. Order the
elements of the vector space Fn

2 in lexicographical order. Let x0 = (0, 0, . . . , 0, 0),x1 = (0, 0, . . . , 0, 1),x2 =
(0, 0, . . . , 1, 0), . . . ,x2n−1 = (1, 1, . . . , 1, 1). The truth table of f ∈ Bn is the vector [f(x0), f(x1), . . . , f(x2n−1)].
The Hamming weight of a vector x ∈ Fn

2 , usually denoted by wt(x), is the number of its entries that are
equal to 1. The weight (or Hamming weight) of a Boolean function f ∈ Bn, denoted by wt(f), is the number
of 1’s in its truth table.

A property important in some cryptographic applications is balancedness. An n-variable Boolean function
f ∈ Bn is called balanced if the number of zeros and the number of ones in its truth table are the same.
Balancedness of Boolean functions is usually studied via Hamming weights or via exponential sums. The
exponential sum of a Boolean function f ∈ Bn is defined as

(1.2) S(f) =
∑
x∈Fn

2

(−1)f(x).

Observe that a Boolean function is balanced if and only if S(f) = 0. The Hamming weight of a Boolean
function and its exponential sum are linked by the equation

(1.3) wt(f) = 2n−1 − 1

2
S(f).

Other desirable properties in cryptography include (but are not limited to) non-linearity, resiliency, bentness,
etc. For more comprehensive information about Boolean functions, please refer to [2, 18].
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The search of Boolean functions with good cryptographic properties is a hard problem. One reason for this
is the fact that |Bn| = 22

n

, which has the consequence of making exhaustive searches over Bn not feasible
even for small values of n. Another problem is that the calculation of properties like the balancedness of
a Boolean function using the definition of transformations like the exponential sum is analogous to using
its truth table. In both cases we must perform 2n calculations in order to obtain the answer. Because
of these problems, scientists often impose conditions on the underlying Boolean functions in order to ease
these difficulties. One way to do this is to study Boolean functions that are invariant under the action of
certain finite groups. If G is the group acting on Bn, then we call the Boolean functions invariant under
this action G-invariant Boolean functions. Two of the most well-known families of these type of functions
are symmetric Boolean functions and rotation symmetric Boolean functions. Their balancedness as well as
other cryptographic attributes have been the subject of several studies [5, 6, 4, 7, 9, 13, 15, 17, 19, 20, 26].

A Boolean function f ∈ Bn is called symmetric if it is invariant under the action of the symmetric group
Sn of n symbols, that is, if

f
(
Xσ(1), . . . , Xσ(n)

)
= f(X1, . . . , Xn)

for every σ ∈ Sn. On the other hand, a Boolean function f ∈ Bn is called rotation symmetric if it is invariant
under the action of the cyclic group Zn. Explicitely, if Cn is the representation of Zn in Sn, then

f
(
Xσ(1), . . . , Xσ(n)

)
= f(X1, . . . , Xn)

for every σ ∈ Cn.
It is well-known that the ANF of a symmetric Boolean function f ∈ Bn has the form

(1.4) f = en,k1
⊕ en,k2

⊕ · · · ⊕ en,ks

where 0 ≤ k1 < · · · < ks are integers and en,k represents the n-variable elementary symmetric polynomial
of degree k. For simplicity, the notation en,[k1,...,ks] is used to represent the right-hand side of (1.4). It is
known that if 0 ≤ k1 < · · · < ks are fixed integers, then the sequence {S(en,[k1,...,ks])}n satisfies a linear
recurrence with constant coefficients [1, 5], in other words, it is a C-finite sequence. To be more specific, the
sequence {S(en,[k1,...,ks])}n satisfies the recurrence whose characteristic polynomial is given by

(1.5) (X − 2)Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1),

where r = ⌊log2(ks)⌋+1 and Φn(X) represents the n-th cyclotomic polynomial. The fact that {S(en,[k1,...,ks])}n
is a C-finite sequence is important, as it implies that the value of the exponential sum can be calculated
efficiently provided some initial conditions. This result was extended to Walsh-Hadamard transformations
of symmetric Boolean functions in [7] and to every finite field in [8]. Even though the exponential sums
(as well as other transformations) of symmetric Boolean functions can be computed efficiently, symmetric
Boolean functions are often avoided in cryptographic applications because of security concerns.

Rotation symmetric Boolean functions were introduced by Pieprzyk and Qu in the late 1990’s [26]. They
showed that these functions are useful, among other things, in the design of fast hashing algorithms with
strong cryptographic properties. Their work prompted further research on this class of functions. In 2006,
9-variable Boolean functions with nonlinearity 241 where found in the class of rotation symmetric Boolean
functions [19]. To find such Boolean functions was an open problem for more than three decades before
their discovery. In [9], T. Cusick proved that, as in the case of symmetric Boolean functions, sequences
of weights of rotation symmetric Boolean functions are C-finite. Cusick’s result was later generalized to
Walsh-Hadamard transformations [7] and to every finite field [3]. His result implies that, as in the case of
symmetric Boolean functions, values of exponential sums of rotation symmetric Boolean functions can be
computed efficiently (provided some initial conditions). However, we still do not have an explicit formula
like (1.5) for the case of rotation symmetric Boolean functions and we do not know a priori the order of the
recurrence.

The ANF of a rotation symmetric Boolean function is, as in the case of symmetric Boolean functions,
well-understood. Let 1 < j1 < · · · < js be integers. Rotation symmetric Boolean functions of the form

(1.6) Rj1,...,js(n) = X1Xj1 · · ·Xjs ⊕X2Xj1+1 · · ·Xjs+1 ⊕ · · · ⊕XnXj1−1 · · ·Xjs−1,

where none of the terms overlap or

(1.7) Rj1,...,js(n) = X1Xj1 · · ·Xjs ⊕ · · · ⊕XkXj1+k · · ·Xjs+k
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whereXk+1Xj1+k+1 · · ·Xjs+k+1 is the first term overlapping one of the previous terms; are called amonomial
rotation symmetric Boolean functions (the indices are taken modulo n with the complete system of residues
{1, 2, . . . , n}). The period of a monomial rotation Boolean function is the amount of terms it has. The
ANF of a rotation symmetric Boolean function is a combination of monomial rotation symmetric Boolean
functions. We say that Rj1,...,js(n) is long cycle if its period is n and short cycle if its period is less than n.
For instance, the rotation

R2,3(4) = X1X2X3 ⊕X2X3X4 ⊕X3X4X1 ⊕X4X1X2

is an example of a long cycle, while
R3(4) = X1X3 ⊕X2X4

is an example of a short cycle. The ANF of a rotation symmetric Boolean function is a combination of
rotation monomial symmetric Boolean functions

As previously discussed, families of Boolean functions that are invariant under the action of a certain
(fixed) finite group are used, among other things, to make searches of Boolean functions with good cryp-
tographic attributes, thus it is natural to ask how many of such functions are there. In [27], Stǎnicǎ and
Maitra provided the number of rotation symmetric Boolean functions in Bn. They found this number to be
given by 2gn where

(1.8) gn =
1

n

∑
d|n

ϕ(d)2n/d,

and ϕ is the Euler’s totient function (see [27, Th. 3]). Stǎnicǎ and Maitra went further and provided the
count of short cycles and the count of long cycles (see [27, Th. 9]). They also presented a study of rotation
symmetric functions with cryptographic significance. In particular, they studied rotation symmetric bent
functions and found all homogeneous rotation symmetric Boolean functions in 10 variables of degree 2 that
are bent functions. Furthermore, they conjectured the following:

There are no homogeneous rotation symmetric Boolean bent functions of degree bigger than 2.

This conjecture remains an open problem. See [27, Conj. 12] for more details.
In this article we are interested in another family of Boolean functions that are invariant under the

action of the subgroup of n/k elements of Cn (observe that k must divide n). These functions are called
k-rotation Boolean functions. They are a generalization of the concept of rotation Boolean functions and
were introduced by Kavut and Yücel in [21]. Kavut and Yücel found 9-variable Boolean functions with
nonlinearity 242 in the class of 3-rotation symmetric Boolean functions, which is an improvement over the
bound presented in [19].

In this article, we characterize when a monomial k-rotation symmetric Boolean function is a short k-
cycle (to be defined in the next section). We do this by exhibiting an explicit generator for them. These
results can be proved using elementary machinery and are generalizations of the ones presented in [27] for
regular rotation monomial Boolean functions. The results also generalize the count presented in [10, 14] for
monomial k-rotation symmetric Boolean functions of degree 3 for k = 2, 3. Characterizing short k-cycles is
important, as they often need to be excluded in results related to affine equivalency and the recursivity of
Hamming weights of k-rotations symmetric Boolean functions [11, 12]

We finish this introduction by saying that the idea of a Boolean function can be easily extended to any
Galois field Fq with q a power of a prime p. A function f : Fn

q → Fq is called a q-ary function in n variables.
The set of all q-ary functions in n variables is denoted by Bn,q. Observe that Bn,2 = Bn. The concepts of
symmetric, rotation symmetric, k-rotation symmetric, and more general, G-invariant q-ary function, can also
be extended to Fq by making the appropiate adjustments. Today, many cryptographic properties have been
extended to characteristic beyond two [3, 8, 16, 23, 24, 25]. In the last section of this article, we generalize
our main results from F2 to every finite field.

2. Preliminaries

Let k and n be a positive integers with k ≤ n. Consider the set of variables {X1, . . . , Xn}. The k-shift
operator En,k is defined as

(2.1) En,k(Xj) =

{
Xj+k, if j + k ≤ n

Xj+k−n, if j + k > n.
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This map can be extended to tuples (X1, . . . , Xn) via

(2.2) En,k(X1, . . . , Xn) = (En,k(X1), . . . , En,k(Xn)).

A Boolean function f ∈ Bn is called a k-rotation symmetric Boolean function if

f(Eℓ
n,k(X1, . . . , Xn)) = f(X1, . . . , Xn)

for every 0 ≤ ℓ ≤ n.
Observe that k-rotation symmetric Boolean functions are fixed under the action of the subgroup ⟨k⟩ of

Zn. This subgroup can be identified with the subgroup of Cn generated by σk
n where σn is the rotation

σn =

(
1 2 3 · · · n− 1 n
2 3 4 · · · n 1

)
(Cn is the copy of Zn in Sn). Thus if gcd(k, n) = 1, then every k-rotation symmetric Boolean function is in
fact a regular rotation symmetric Boolean function. Furthermore, if gcd(k, n) = d > 1, then every k-rotation
symmetric Boolean function is a d-rotation symmetric Boolean function. Because of this, we only consider
k-rotation symmetric Boolean functions when k divides n.

Let ℓ,m, n ∈ N with ℓ ≤ n and m ≤ n/k. Consider the expression

(2.3)

m−1⊕
j=0

Xt1+jkXt2+jk · · ·Xtℓ+jk.

If (2.3) is fixed by the rotation σk
n, then we call this expression a monomial k-rotation symmetric Boolean

function (or monomial k-rotation for short). Any of the terms of (2.3) is called a generator for the monomialk-
rotation. If m is the smallest positive integer that satisfies such condition, then m is called the period or
length of the monomial k-rotation. The polynomial (2.3) is called

(1) a short cycle monomial k-rotation of size m if m < n/k,
(2) a long cycle monomial k-rotation if m = n/k.

For simplicity of the writing, we often use the term short (long) k-cycle to express that the Boolean function
considered is a short (long) cycle monomial k-rotation. We also use the notation k-Rt1,t2,··· ,tℓ(n) to represent
(2.3).

As discussed in the introduction, families of Boolean functions that are invariant under the action of a
certain (fixed) finite group are used, among other things, to make searches of Boolean functions with good
cryptographic attributes, thus it is natural to ask how many of such functions are there. An answer to this
question uses Burnside’s lemma.

Theorem 2.1 (Burnside’s lemma). Let G be a group of permutations acting on a set S. The number of
orbits induced on S is given by

(2.4)
1

|G|
∑
σ∈G

|FixS(σ)|,

where FixS(σ) = {x ∈ S : σ(x) = x}.

Suppose that G < Sn acts on Fn
2 . This action induces a partition of Fn

2 into orbits. For example, the partition
of F6

2 induced by the action of C6 is given in Table 1. The G-invariant Boolean functions are characterized
by being the Boolean functions that have a constant value on each orbit of the partition induced by the
action of G on Fn

2 . It is clear that if the partition of Fn
2 generated by the action of G has N orbits, then

the number of G-invariant Boolean functions in n variables is given by 2N . For example, there are 214

rotation symmetric Boolean functions in 6 variables (this a significantly smaller number than the amount of
all Boolean functions in 6 variables). The number N can by computed using Burnside’s lemma.

Let gn be number of orbits in the partition of Fn
2 generated by the action of Cn. By using Burnside’s

lemma, Stǎnicǎ and Maitra [27] found the value of gn to be (1.8). Kavut and Yücel showed that a similar
result holds for k-rotation symmetric Boolean function [21]. We present the result in a more general setting.
The proof presented follows the standard machinery presented in [27], which is based on the fact that we
are working with cyclic groups.
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Table 1. Orbits of F6
2 corresponding to the action of C6.

orbit 1: (0, 0, 0, 0, 0, 0)
orbit 2: (0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0, 0),

(0, 0, 1,0, 0, 0), (0, 1, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0)
orbit 3: (0, 0, 0, 0, 1, 1), (0, 0, 0, 1, 1, 0), (0, 0, 1, 1, 0, 0),

(0, 1, 1, 0, 0, 0), (1, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 0)
orbit 4: (0, 0, 0, 1, 0, 1), (0, 0, 1, 0, 1, 0), (0, 1, 0, 0, 0, 1),

(0, 1, 0, 1, 0, 0), (1, 0, 0, 0, 1, 0), (1, 0, 1, 0, 0, 0)
orbit 5: (0, 0, 1, 0, 0, 1), (0, 1, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0)
orbit 6: (0, 0, 0, 1, 1, 1), (0, 0, 1, 1, 1, 0), (0, 1, 1, 1, 0, 0),

(1, 0, 0, 0, 1, 1), (1, 1, 0, 0, 0, 1), (1, 1, 1, 0, 0, 0)
orbit 7: (0, 0, 1, 1, 0, 1), (0, 1, 0, 0, 1, 1), (0, 1, 1, 0, 1, 0),

(1, 0, 0, 1, 1, 0), (1, 0, 1, 0, 0, 1), (1, 1, 0, 1, 0, 0)
orbit 8: (0, 0, 1, 0, 1, 1), (0, 1, 0, 1, 1, 0), (0, 1, 1, 0, 0, 1),

(1, 0, 0, 1, 0, 1), (1, 0, 1, 1, 0, 0), (1, 1, 0, 0, 1, 0)
orbit 9: (0, 1, 0, 1, 0, 1), (1, 0, 1, 0, 1, 0)
orbit 10: (0, 0, 1, 1, 1, 1), (0, 1, 1, 1, 1, 0), (1, 0, 0, 1, 1, 1),

(1, 1, 0, 0, 1, 1), (1, 1, 1, 0, 0, 1), (1, 1, 1, 1, 0, 0)
orbit 11: (0, 1, 0, 1, 1, 1), (0, 1, 1, 1, 0, 1), (1, 0, 1, 0, 1, 1),

(1, 0, 1, 1, 1, 0), (1, 1, 0, 1, 0, 1), (1, 1, 1, 0, 1, 0)
orbit 12: (0, 1, 1, 0, 1, 1), (1, 0, 1, 1, 0, 1), (1, 1, 0, 1, 1, 0)
orbit 13: (0, 1, 1, 1, 1, 1), (1, 0, 1, 1, 1, 1), (1, 1, 0, 1, 1, 1),

(1, 1, 1, 0, 1, 1), (1, 1, 1, 1, 0, 1), (1, 1, 1, 1, 1, 0)
orbit 14: (1, 1, 1, 1, 1, 1).

Proposition 2.2. Suppose that n is a positive integer and k a positive divisor of n. Let S = {α0, . . . , αL−1}
be any set of L symbols where L is a fixed positive integer. Consider the set Tn = Sn of all n-tuples of
elements of S. The number of orbits in the partition of Tn induced by the action of ⟨σk

n⟩ is given by

(2.5)
k

n

∑
d |n/k

ϕ(d)Ln/d,

where ϕ is the Euler’s totient function.

Proof. The permutation σkj
n is descomposed into gcd(n, kj) = k gcd(n/k, j) disjoint cycles, each with length

n

gcd(n, kj)
=

n/k

gcd(n/k, j)
.

In order for δ ∈ Tn to be fixed by σkj
n each of the entries corresponding to a disjoint cycle of σkj

n must be
the same. For example, if n = 6, k = 2 and j = 2, then the disjoint cycle decomposition of the permutation
σ4
6 is

σ4
6 = (1 5 3)(2 6 4).

Thus, if δ ∈ F6
2 is to be fixed by σ4

6 , then its first, third and fifth entries must be the equal and its second,
fourth and sixth entries must also be equal. In other words, δ must have the form (αi, αj , αi, αj , αi, αj).

Since σkj
n has k gcd(n/k, j) disjoint cycles in its cycle decomposition, it follows that σkj

n has Lk gcd(n/k,j) fixed
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points in Tn. Burnside’s lemma implies that number of orbits is given by

1

n/k

n/k∑
j=1

Lk gcd(n/k,j) =
k

n

∑
d |n/k

n/k∑
j,gcd(n/k,j)=d

Lkd

=
k

n

∑
d |n/k

Lkd
∑

j,gcd(n/(kd),j)=1

1

=
k

n

∑
d |n/k

ϕ
( n

kd

)
Lkd

=
k

n

∑
d |n/k

ϕ (d)Ln/d.

This concludes the proof. □

Corollary 2.3. Let n be a positive integer and k a positive divisor of n. Suppose that p is a prime integer
and r a positive integer. The number of k-rotation symmetric pr-ary functions in Bn,pr is given by prgn,k,pr ,
where

gn,k,pr =
k

n

∑
d |n/k

ϕ(d)prn/d,

We point out that there is a one to one correspondence between the orbits in the partition of Fn
2 indunced

by the action of ⟨σk
n⟩ and monomial k-rotation. If δ = (δ1, . . . , δn) ∈ Fn

2 , then define (X1 · · ·Xn)
δ to be

(X1 · · ·Xn)
δ = Xδ1

1 · · ·Xδn
n .

Given G < Sn, define OG(Fn
2 ) to be the set of all distinct orbits induced by the action of G on Fn

2 . Define,
for O ∈ OG(Fn

2 ), the Boolean polynomial

(2.6) fO(X1, · · · , Xn) =
⊕
δ∈O

(X1 · · ·Xn)
δ.

For example, if O is the fifth orbit in Table 1, then

fO(X) = X1X4 ⊕X2X5 ⊕X3X6,

which is a rotation symmetric monomial (G = C6 in this example). It is not hard to see that, when G = ⟨σk
n⟩,

the polynomial (2.6) is always a k-rotation symmetric monomial.
The map from O⟨σk

n⟩(F
n
2 ) to Bn given by O → fO is a one to one correspondence between O⟨σk

n⟩(F
n
2 )

and the set of all distinct k-rotation symmetric monomials. This correspondence was exploited by Stǎnicǎ
and Maitra when they provided the count of long cycles and the count of short cycles for regular rotation
symmetric Boolean functions [27]. Observe that this one to one correspondence also holds if we replace F2

with any Galois field Fpr (p prime).
In the next section we will provide generators for short k-cycles. We then use these generators to count

short k-cycles. Our results are presented in terms of k-rotation symmetric monomials instead of tuples in
an orbit, but the same results can be obtained by studying tuples instead of polynomials.

3. Generators for short cycles

We already defined long cycle and short cycle k-rotation symmetric Boolean functions. Our first result
concerns about the relation between the length of the k-cycle (i.e. its period m) and the number of variables
n. This result is a straight forward result from group actions and it is not surprising.

Lemma 3.1. Let k, ℓ, n ∈ N with ℓ < n and k|n. If k-Rt1t2,··· ,tℓ(n) is a short cycle of size m, then m|n/k.

Proof. Recall that k-rotation symmetric Boolean functions are those functions in Bn that are fixed under the
action of the subgroup H = ⟨σk

n⟩ of the cyclic cyclic group Cn = ⟨σn⟩. The terms of the rotation generated
by the monomial Xt1Xt2 · · ·Xtℓ are precisely the elements of O(Xt1Xt2 · · ·Xtℓ), which represents the orbit
of Xt1Xt2 · · ·Xtℓ under the action of H. Thus m divides the order of H, which is n/k. This concludes the
proof. □
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A natural step now is to find a way to detect a short k-cycle by analyzing its generators. We start with
the following auxiliary result.

Lemma 3.2. Let n and k be natural numbers and k-Rt1,t2,...,tℓ(n) be a k-rotation with

1 ≤ t1 < t2 < · · · < tℓ ≤ n.

If there is tj ≡ t mod k, then at least one of the terms of k-Rt1,t2,...,tℓ has the variable Xt in it.

Proof. Suppose that there is a tj such that tj ≡ t mod k. Then, there is a non-negative integer a such that
tj = t + ak. Also, since k divides n, there is a non-negative integer b such that n = bk. Let v = b − a.
Observe that

σkv
n ·

(
Xt1 · · ·Xtj · · ·Xtℓ

)
= Xt1+kv · · ·Xtj+kv · · ·Xtℓ+kv

.

In particular,

Xtj+kv = Xt+ak+k(b−a) = Xt+kb = Xt+n = Xt.

This concludes the proof.
□

The next result identifies explicit generators for short k-cycles of length m.

Theorem 3.3. Let ℓ, k and n be natural numbers with ℓ < n. If k-Rt1,··· ,tℓ(n) is a short k-cycle of length
m, then n/(km) divides ℓ (the degree of k-Rt1,...,tℓ(n)) and there are integers 1 ≤ s1 < s2 < · · · < sqm ≤ mk,
with qm = qm(k, ℓ, n) = mkℓ/n and 1 ≤ s1 ≤ k, such that

(3.1)

n
mk−1∏
j=0

Xs1+jmkXs2+jmk · · ·Xsqm+jmk

is a generator of k-Rt1,...,tℓ(n).

Proof. Suppose that k-Rt1,...,tℓ(n) is a short k-cyle of length m. Then m divides n/k. Let d = n/(mk). By
Lemma 3.2 there is a term that has Xs1 in it, where s1 = min{s : tj ≡ s mod k} (understanding that the
complete reduced residue system mod k is {1, 2, · · · , k}). Suppose that Xs1Xs2 · · ·Xsℓ is such term. This
term is also a generator of the k-rotation k-Rt1,...,tℓ(n) with 1 ≤ s1 · · · < sℓ ≤ n and 1 ≤ s1 ≤ k. Thus the
terms of k-Rt1,...,tℓ(n) are given by

Xs1Xs2 · · · Xsℓ−1
Xsℓ(3.2)

Xs1+kXs2+k · · · Xsℓ−1+kXsℓ+k

Xs1+2kXs2+2k · · · Xsℓ−1+2kXsℓ+2k

...

Xs1+(m−1)kXs2+(m−1)k · · · Xsℓ−1+(m−1)kXsℓ+(m−1)k,

where it is understood that the indices of variables are to be taken mod n with reduced residue system
{1, 2, . . . , n}. If we continue adding k to the subscripts the next term is

(3.3) Xs1+mkXs2+mk · · ·Xsℓ−1+mkXsℓ+mk.

However, k-Rt1,...,tℓ(n) is a short k-cycle of length m (hypothesis), thus term (3.3) is equal to one of the
terms on the list (3.2). In other words, there is i ∈ {2, 3, . . . , ℓ} such that

si = s1 +mk(3.4)

si+j = s1+j +mk for j ∈ {1, 2, . . . , ℓ− i}
n+ sj = sℓ−i+1+j +mk for j ∈ {1, 2, . . . , i− 1}.

Therefore, the term (3.3) is given by

XsiXsi+1
· · ·Xsℓ Xs1Xs2 · · ·Xsi−1︸ ︷︷ ︸

i−1 variables

and it is also a generator for k-Rt1,...,tℓ(n).
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The terms of k-Rt1,...,tℓ(n) can now be re-written as

XsiXsi+1 · · · XsℓXs1Xs2 · · ·Xsi−1

Xsi+kXsi+1+k · · · Xsℓ+1Xs1+kXs2+k · · ·Xsi−1+k

...

Xsi+(m−1)kXsi+1+(m−1)k · · · Xsℓ+(m−1)kXs1+(m−1)kXs2+(m−1)k · · ·Xsi−1+(m−1)k.

After applying σmk
n to XsiXsi+1

· · ·XsℓXs1Xs2 · · ·Xsi−1
we get

Xsi+mkXsi+1+mk · · ·Xsℓ+mk Xs1+mkXs2+mk · · ·Xsi−1+mk︸ ︷︷ ︸
i−1 variables

and arguing as before (see (3.4)) we see that this term has the form

(3.5) Xs2i−1
· · ·Xsℓ Xs1Xs2 · · ·Xsi−1︸ ︷︷ ︸

i−1 variables

Xs1+mkXs2+mk · · ·si−1+mk︸ ︷︷ ︸
i−1 variables

.

The term (3.5) is also a generator for k-Rt1,...,tℓ(n).
Continue with this process to get

Xs1Xs2 · · ·Xsi−1
Xs1+mkXs2+mk · · ·Xsi−1+mk · · ·Xs1+(d−1)mkXs2+(d−1)mk · · ·Xsi−1+(d−1)mk

is a generator of k-Rt1,t2,...,tℓ(n). Observe that

ℓ = d(i− 1) =
n

mk
(i− 1).

Let q := i− 1 = mkℓ
n . Since sq+1 = si = s1 +mk, then 1 ≤ s1 < · · · < sq ≤ mk and

n
mk−1∏
j=0

Xs1+jmkXs2+jmk · · ·Xsq+jmk

is a generator of k-Rt1,...,tℓ(n). □

Example 3.4. Consider the 4-rotation given by 4-R6,7,22,23(32). This is a short 4-cycle of length 4. Explic-
itly,

4-R6,7,22,23(32) = X6X7X22X23 ⊕X10X11X26X27 ⊕
X14X15X30X31 ⊕X18X19X2X3

In this case, q4(4, 4, 32) is given by

q4 =
4× 4× 4

32
= 2.

According to the previous theorem, there are integers s1, s2 satisfying 1 ≤ s1 ≤ 4 and 1 ≤ s1 < s2 ≤ 16 such
that

1∏
j=0

Xs1+16jXs2+16j = Xs1Xs2Xs1+16Xs2+16

is a generator of 4-R6,7,22,23(32). Indeed, this generator is given by X2X3X18X19.

Observe that Theorem 3.3 states that if a monomial k-rotation is of length m, then it must have a
generator of the form (3.1). In other words, the short k-cycle must have the form

m−1⊕
i=0

n
mk−1∏
j=0

Xs1+(jm+i)kXs2+(jm+i)k · · ·Xsqm+(jm+i)k

The converse is not true, that is, having a generator (3.1) does not implies that we have a short k-cycle with
period m. What is true is that if a monomial k-rotation has a generator of type (3.1), then the length of the
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cycle is a divisor of m. To see this, observe that, by performing the operation of mod n on the indices, we
have

σmk
n ·

n
mk−1∏
j=0

Xs1+jmkXs2+jmk · · ·Xsqm+jmk =

n
mk−1∏
j=0

Xs1+(j+1)mkXs2+(j+1)mk · · ·Xsqm+(j+1)mk

=

n
mk∏
j=1

Xs1+jmkXs2+jmk · · ·Xsqm+jmk

=

n
mk−1∏
j=1

Xs1+jmkXs2+jmk · · ·Xsqm+jmk

×Xs1+(n/(mk))mkXs2+(n/(mk))mk · · ·Xsqm+(n/(mk))mk

=

n
mk−1∏
j=0

Xs1+jmkXs2+jmk · · ·Xsqm+jmk,

which implies

(3.6) σmk
n ∈ Stab

 n
mk−1∏
j=0

Xs1+jmkXs2+jmk · · ·Xsqm+jmk

 .

But any stabilizer is a subgroup of H = ⟨σk
n⟩. Since (3.6) is true, then it follows that the length of the cycle

is a divisor of m.
In the next section we will used Theorem 3.3 to provide a count of the number of short k-cycles of length

m.

4. Count of short k-cycles

Let m be a divisor of n/k such that n/(mk) divides ℓ. In this section we will prove a formula for the
number of short k-cycles k-Rt1,...,tℓ(n) with period m. We start the following definition.

Definition 4.1. Suppose that ℓ, k and n are positive integers with ℓ < n. Let m be a divisor of n/k such
that n/(km) divides ℓ. Then,

qm(n, ℓ, k) =
mkℓ

n
,(4.1)

Dm(n, ℓ, k) = {1 ≤ d < m : d|m and qd ∈ N} for m ≥ 2,

Cm(n, ℓ, k) = {k-Rr1,...,rℓ(n) : k-Rr1,...,rℓ(n) is a k-cycle of length m}.
When the context is clear, we write Dm and qm instead of Dm(n, ℓ, k) and qm(n, ℓ, k).

Our goal is to calculate #Cm(n, ℓ, k). Next is an auxiliary result.

Lemma 4.2. Let ℓ, k and n be natural numbers with ℓ < n. Consider a k-cycle of length m with generator
given by (3.1). For 1 ≤ z ≤ k, define

[z] = {sr : sr ≡ z mod k for 1 ≤ r ≤ qm} .
Then, the k-cycle has #[z] terms which contain the variable Xz.

Proof. By previous discussion we know that the k-cycle of length m can be written as

(4.2)

m⊕
i=1

n
mk−1∏
j=0

Xs1+jmk+ikXs2+jmk+ik · · ·Xsqm+jmk+ik

where 1 ≤ s1 < s2 < · · · < sqm ≤ km. Let sr ∈ [z], then sr = z + ak for some integer 0 ≤ a < m. Take
i = m− a in (4.2) and consider the term

(4.3)

n
mk−1∏
j=0

Xs1+jmk+(m−a)k · · ·Xsr+jmk+(m−a)k · · ·Xsqm+jmk+(m−a)k.
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Focus on the variable Xsr+jmk+(m−a)k and let j = n/(mk)− 1. Note that

Xsr+jmk+(m−a)k = Xz+ak+( n
mk−1)mk+(m−a)k

= Xz+n

= Xz.

Thus, Xz is one of the variables of the term (4.3). Furthermore, since sr ∈ [z] was arbitrarily chosen, then
each element in [z] generates a term of the k-cycle that contains the variable Xz. In other words, the number
of times Xz appears as a variable of one of the terms of the k-cycle is bigger than or equal to #[z].

The converse is also true. If there is a term of (4.2) which has Xz as one of its variables, then there is an
s ∈ {s1, s2, · · · , sqm}, a j ∈ {0, 1, 2, · · · , n/(mk)− 1} and an i ∈ {1, 2, · · · ,m} such that

Xs+jmk+ik = Xz.

It is clear that s ≡ z mod k. This completes the proof. □

Theorem 4.3. Let ℓ, k and n be natural numbers with ℓ < n and k divisor of n. Suppose that m is a divisor
of n/k and that n/(mk) divides ℓ. If Dm = ∅, then the number of short k-cycles of length m is given by

(4.4) #Cm(n, ℓ, k) =

k∑
i=1

qm−1∑
j=0

1

qm − j

(
m− 1

qm − 1− j

)(
mk − im

j

)
Proof. By Theorem 3.3 any short k-cycle of length m has a generator of the form

(4.5)

n
mk−1∏
j=0

Xs1+jmkXs2+jmk · · ·Xsqm+jmk,

where 1 ≤ s1 < s2 < · · · < sqm ≤ mk and qm = mkℓ/n ∈ N. By hypothesis Dm = ∅, thus (4.5) only generates
k-cycles of length m. For each generator (4.5), let Sm := {s1, s2, . . . , sqm} and Tz := {s ∈ Sm : s ≡ z
mod k} for t ≥ 1. We need to count the number of ways of choosing the subscripts s1, . . . , sqm in such a way
that (4.5) generates different k-cycles. We proceed by cases.

Case 1: Suppose first that m < qm. Consider first the case when s1 = 1. The cardinality of T1 must have
the form #T1 = m− j for some 0 ≤ j ≤ m− 1. Observe that

#{1 ≤ s ≤ mk : s ̸≡ 1 mod k} = mk −m,

which implies that there are (
mk −m

qm −m+ j

)
possible ways of choosing subscripts that are not in T1. Since s1 = 1, there are(

m− 1

m− 1− j

)
ways to choose the rest of the subscripts that are congruent to 1 mod k. Thus, there are(

m− 1

m− 1− j

)(
mk −m

qm −m+ j

)
possible ways to construct the set Sm. Not all of these possibilities generate different k-rotations. Lemma 4.2
implies there are m−j terms in the k-cycle containing the variable X1. Thus, given s1 = 1 and #T1 = m−j,
the number of ways to construct the set Sm in such a way that (4.5) generates different k-cycles is

1

m− j

(
m− 1

m− 1− j

)(
mk −m

qm −m+ j

)
.

We conclude that the number of short k-cycles of length m with s1 = 1 is given by

m−1∑
j=0

1

m− j

(
m− 1

m− 1− j

)(
mk −m

qm −m+ j

)
.
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Suppose now that s1 ̸= 1. Say that s1 = i where i ≥ 2 and there are not subscripts in Sm which are
congruent to 1, 2, . . . , i− 1 mod k. As before, #Ti = m− j with 0 ≤ j ≤ m− 1. Also,

#{1 ≤ s ≤ mk : s ̸≡ 1, 2, . . . , i mod k} = mk − im,

which implies that there are (
mk −mi

qm −m+ j

)
possible ways of choosing subscripts that are not in Ti (observe that if i > k− ⌊qm/m⌋, then this number is
zero). Arguing as before implies that the number of short k-cycles of length m with s1 = i, for 2 ≤ i ≤ k is
given by

m−1∑
j=0

1

m− j

(
m− 1

m− 1− j

)(
mk − im

qm −m+ j

)
.

We conclude that number of different k-rotations of length m is

(4.6)

k∑
i=1

m−1∑
j=0

1

m− j

(
m− 1

m− 1− j

)(
mk − im

qm −m+ j

)
.

A change of variables transforms (4.6) into

(4.7)

k∑
i=1

qm−1∑
j=0

1

qm − j

(
m− 1

qm − j − 1

)(
mk − im

j

)
.

Case 2: Suppose now that m > qm. The proof of this case follows almost verbatim as the one of the previous
case. One difference is that now #Ti = qm− j for some 0 ≤ j ≤ qm−1. A similar argument as before implies
that number of different k-rotations of length m is given by (4.7).

This concludes the proof. □

We are now ready for the main result of this section.

Theorem 4.4. Let ℓ, k and n be natural numbers with ℓ < n. Suppose that m is a divisor of n/k such that
n/(mk) divides ℓ. The number of short k-cycles of length m is given for

(4.8) #Cm(n, ℓ, k) =

k∑
i=1

qm−1∑
j=0

1

qm − j

(
m− 1

qm − 1− j

)(
mk − im

j

)
−

∑
d∈Dm

d

m
#Cd(n, ℓ, k).

Proof. We know that a short cycle of length m in n variables must have a generator of the form

(4.9)

n
mk−1∏
j=0

Xs1+jmkXs2+jmk · · ·Xsqm+jmk.

Moreover, the important part of this generator is the product of its first qm variables

(4.10) Xs1Xs2Xs3Xs4 · · ·Xsqm−2
Xsqm−1

Xsqm
,

as everything can be expressed in terms of it. If Dm = ∅, then Theorem 4.3 tell us that the number of short
k-cycles of length m is given

(4.11)

k∑
i=1

qm−1∑
j=0

1

qm − j

(
m− 1

qm − 1− j

)(
mk − im

j

)
.

If Dm ̸= ∅, then (4.9) generates short k-cycles of length m and of length d where d ∈ Dm. Therefore, to
count the exact number of short k-cycles of length m, we must subtract to (4.11) a correction related to the
short k-cycles of length d for each d ∈ Dm.

Suppose first that Dm = {d}. Then d | m, which implies that qd | qm. Group the variables in (4.10)
into qm/qd groups as follows (the vertical lines are used to appreciate the split of the generator into different
groups of variables)

(4.12) Xs1Xs2 · · ·Xsqd
|Xsqd+1Xsqd+2 · · ·Xs2qd

| · · · |Xsqm−qd
Xsqm−qd+1

· · ·Xsqm
.
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If (4.12) generates a short k-cycle of length d, then each group from the second to the last can be constructed
from the first group. Consider the set Tz used in the proof of Theorem 4.3. Recall that for each i ∈
{1, 2, . . . , k}, the cardinality of Ti can be written as qm − j, where 0 ≤ j ≤ qm − 1 represents the number of
subscripts that are not congruent to i mod k. In order to have a short cycle of length d, all the j subscripts
that are not congruent to i must be equally distributed in the qm/qd groups. Therefore, in the first qd
variables, there must be j÷(qm/qd) = jqd/qm subscripts that are not congruent to i mod k and the number
of combinations constructed from the qm variables having length d is(

d− 1

qd − 1− jqd
qm

)(
dk − id

j qd
qm

)
.

This discussion impliest that the number of k-cycles of length m having qm − j subscripts congruent to i
mod k is given by

(4.13)
1

qm − j

[(
m− 1

qm − 1− j

)(
mk − im

j

)
− δN

(
jqd
qm

)(
d− 1

qd − 1− jqd
qm

)(
dk − id

jqd
qm

)]
,

where δS(x) = 1 if x /∈ S and 0 otherwise. By letting i and j run in their respective domains, we obtain that
the number of k-rotations having length exactly m is

(4.14)

k∑
i=1

qm−1∑
j=0

1

qm − j

(
m− 1

qm − 1− j

)(
mk − im

j

)
−

k∑
i=1

qm−1∑
j=0

δN

(
jqd
qm

)
1

qm − j

(
d− 1

qd − 1− jqd
qm

)(
dk − id

jqd
qm

)
.

The change of variables u = jqd/qm ∈ N implies

(4.15)
1

qm − j
=

1

qm − uqm
qd

=
qd

qmqd − uqm
=

qd
qm(qd − u)

.

Combining (4.14) and (4.15) we have that the number of k-rotations of length m when Dm = {d} is given
by

(4.16)

k∑
i=1

qm−1∑
j=0

1

qm − j

(
m− 1

qm − 1− j

)(
mk − im

j

)
− qd

qm

k∑
i=1

qd−1∑
j=0

1

qd − u

(
d− 1

qd − 1− u

)(
dk − id

u

)
.

Observe that qd/qm = d/m, therefore (4.16) is equivalent to

(4.17)

k∑
i=1

qm−1∑
j=0

1

qm − j

(
m− 1

qm − 1− j

)(
mk − im

j

)
− d

m
#Cd(n, k, ℓ).

The case #Dm > 1 follows in a similar manner. That is, to get the number of k-rotations having length
m we must subtract

(4.18)
d

m
#Cd(n, ℓ, k).

to (4.11) for any d ∈ Dm. Therefore,

(4.19) #Cm(n, ℓ, k) =

k∑
i=1

qm−1∑
j=0

1

qm − j

(
m− 1

qm − 1− j

)(
mk − im

j

)
−

∑
d∈Dm

d

m
#Cd(n, ℓ, k).

This concludes the proof. □

Corollary 4.5. Let ℓ and n be natural numbers with ℓ < n. Suppose that m is a divisor of n with the
property that n/m divides ℓ. The number of short cycles of length m in n variables and of degree ℓ is given
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by

#Cm(n, ℓ, 1) =
1

qm

(
m− 1

qm − 1

)
−

∑
d∈Dm

d

m
#Cd(n, ℓ, 1)(4.20)

=
1

qm

[(
m− 1

qm − 1

)
−

∑
d∈Dm

qd#Cd(n, ℓ, 1)

]
.

5. Extension of the results to Galois fields Fpr

As mentioned in the introduction, many cryptographic properties have been extended to characteristic
beyond two. Thus, it is natural to ask if the results presented so far can be extended to every finite field.
The answer is yes!

Let S = {α0, α1, α2, · · · , αL−1} be a set of L symbols where L is a positive integer getter than or equal to
2. Consider the action of ⟨σk

n⟩ on Sn (the set of n-tuples with entries from S). If α = (αj1 , · · · , αjn) ∈ Sn,
then we define (X1 · · ·Xn)

α to be

(X1 · · ·Xn)
α = X

αj1
1 · · ·Xαjn

n .

For example, if S = F4 = F2(γ) = {0, 1, γ, γ + 1} with γ2 = γ + 1, then = {α0, α1, α2, α3} = {0, 1, γ, γ + 1}.
If we choose (1, 0, γ, γ) ∈ S4 = F4

4, then

(X1X2X3X4)
(1,0,γ,γ) = X1X

2
3X

2
4 .

If O ∈ O⟨σk
n⟩, then the polynomial

fO(X1, . . . , Xn) =
∑
α∈O

(X1 · · ·Xn)
α

is called a monomial k-rotation over S. For example, let us go back to S4 = F2(γ)
4. The orbits of (1, γ+1, 0, 0)

and (γ, 1 + γ, γ, 1 + γ) under the action of ⟨σn⟩ are given by

O1 = O((1, γ + 1, 0, 0)) = {(1, γ + 1, 0, 0), (0, 1, γ + 1, 0), (0, 0, 1, γ + 1), (γ + 1, 0, 0, 1)}.
O2 = O((γ, 1 + γ, γ, 1 + γ)) = {(γ, 1 + γ, γ, 1 + γ), (1 + γ, γ, 1 + γ, γ)}.

Thus,

fO1
(X) = X1X

3
2 +X2X

3
3 +X3X

3
4 +X4X

3
1(5.1)

fO2(X) = X2
1X

3
2X

2
3X

3
4 +X3

1X
2
2X

3
3X

2
4

are examples of 1-rotation monomials over F4 (observe that k = 1 in this case). We say that a monomial
k-rotation fO over S is a long k-cycle if the corresponding orbit O has length n/k. Otherwise, we say that
fO is a short cycle. For instance, fO1

is an example of a long k-cycle while fO2
is a short k-cycle.

As before, any term of a monomial k-rotation is called a generator of it. For example, any of the terms
on list

X1X
3
2 , X2X

3
3 , X3X

3
4 , X4X

3
1 ,

is a generator of fO1
. We use the notation k-Rs

e1
1 ,...,s

eℓ
ℓ
(n) to represent the monomial k-rotation in n

variables over S generated by Xe1
s1 · · ·X

eℓ
sℓ
. For example, 1-R12,23,32,43(4) represents the polynomial fO2

in
(5.1). Finally, Definition 4.1 in this setting is the following.

Definition 5.1. Suppose that ℓ, k and n are positive integers with ℓ < n. Let S = {α0, . . . , αL−1} be a set
of L elements. Suppose that ⟨σk

n⟩ acts on Sn. Let m be a divisor of n/k such that n/(km) divides ℓ. Then,

qLm(n, ℓ, k) =
mkℓ

n
,(5.2)

DL
m(n, ℓ, k) = {1 ≤ d < m : d|m and qLd ∈ N} for m ≥ 2,

CL
m(n, ℓ, k) = {k-Rr

e1
1 ,...,r

eℓ
ℓ
(n) : k-Rr

e1
1 ,...,r

eℓ
ℓ
(n) is a k-cycle of length m}.

With all this at hand, we can now provide the extensions of the main results beyond F2. Theorem 3.3
can be written in general terms as follows.
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Theorem 5.2. Let ℓ, k and n be natural numbers with ℓ < n. Suppose that ⟨σk
n⟩ acts on S = {α0, . . . , αL}.

If k-Rt
r1
1 ,··· ,trℓℓ

(n) is a short k-cycle of length m, then n/(km) divides ℓ. Furthermore, if

qm = qm(k, ℓ, n) = mkℓ/n,

then there are integers 1 ≤ s1 < s2 < · · · < sqm ≤ mk and n1, . . . , nqm ∈ {1, 2, . . . , L− 1}, with 1 ≤ s1 ≤ k,
such that

(5.3)

n
mk−1∏
j=0

Xn1

s1+jmkX
n2

s2+jmk · · ·X
nqm

sqm+jmk

is a generator of k-Rt
r1
1 ,...,t

rℓ
ℓ
(n).

Theorem 4.4 can be extended as follows.

Theorem 5.3. Let ℓ, k and n be natural numbers with ℓ < n. Suppose that ⟨σk
n⟩ acts on S = {α0, . . . , αL}.

The number of short k-cycles over Sn of length m is given by

(5.4) #CL
m(n, ℓ, k) =

k∑
i=1

qm−1∑
j=0

(L− 1)qm

qm − j

(
m− 1

qm − 1− j

)(
mk − im

j

)
−

∑
d∈DL

m(n,ℓ,k)

d

m
#CL

d (n, ℓ, k).

The proofs of Theorem 5.2 and Theorem 5.3 use the same techiniques as the proofs of their Boolean coun-
terpart. Thus, we decided to omit them.

6. Concluding remarks

We characterized a family of generators for short k-cycles over any Galois field. We used these generators
to provide a recursive formula for for the number of short k-cycles in n variables of degree ℓ that have length
m, where m is a divisor of n/k such that n/(km) divides ℓ. We hope and expect to see applications of our
results.
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