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Abstract. It is known that exponential sums of symmetric Boolean functions are linear recurrent. The

charecteristic polynomial of the homogeneous linear recurrence that they satisfy can be expressed in terms

in cyclotomic polynomials. In this work, we study the general recurrence for q-ary functions and, in the
case of 3-ary functions, we express the characteristic polynomial of the recurrence in terms of some special

polynomials.

1. Introduction

Exponential sums are beautiful mathematical objects that lie in the intersection of combinatorics and
number theory. These objects can be used on various problems, for example, to determine if a system of
polynomial equations have solutions over a finite field and to detect when a particular function is balanced.
This last property (balancedness) is very useful in some cryptographic applications [6, 7, 8, 9, 13, 14, 15].
Classical examples of exponential sums include the Gauss sum, Kloosterman sums, and Weyl sums.

In this work, we consider exponential sums of the following type. Let q = pr where p is prime and r is a
positive integer. Let Fq be the field of q elements. An n-variable q-ary function is a function f : Fnq → Fq.
The set of all n-variable q-ary functions is denoted by Bn,q. The exponential sum of f ∈ Bn,q is defined by

(1) SFq (f) =
∑
x∈Fnq

ξTr(f(x))
p ,

where ξn = exp(2πi/n) and Tr = TrFq/Fp is the field trace function. The field trace function is explicitly
given by

(2) TrFq/Fp(α) =

r−1∑
j=0

αp
j

,

with arithmetic done in Fq. When q = 2, we call these functions Boolean functions. The set Bn,2 is denoted
by Bn and the exponential sum of a Boolean function f is denoted by S(f) instead of SF2(f).

Exponential sums of type (1) have been extensively studied when the characteristic of the field is 2 because
of their cryptographic applications, see [4, 5, 6, 9, 13, 14, 15, 20]. In the binary case, it is known that, under
certain conditions, exponential sums of symmetric Boolean functions are linear recurrent (this is also true
for other type of functions).

An n-variable Boolean f(X) function is called symmetric if it is fixed under the action of the symmetric
group of n symbols, that is, if

(3) f(Xσ(1), . . . , Xσ(n)) = f(X1, . . . , Xn).

Every n-variable Boolean function can be identified with a multivariable polynomial. This polynomial is
known as the algebraic normal form (or ANF for short) of the Boolean function. In the particular case of
symmetric Boolean functions, every such function can be identified with an expression of the form

(4) en,k1 ⊕ · · · ⊕ en,ks ,

where 0 ≤ k1 < · · · < ks are integers, en,k represents the n-variable elementary symmetric polynomial of
degree k and ⊕ represents addition modulo 2. The polynomial en,k is formed by adding together all distinct
products of k distinct variables in {X1, . . . , Xn}. For example,

e5,2 = X1X2 +X1X3 +X1X4 +X1X5 +X2X3 +X2X4 +X2X5 +X3X4 +X3X5 +X4X5.

We use the notation en,[k1,...,ks] to represent (4).
1
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As mentioned earlier, under some circumstances, exponential sums of symmetric Boolean functions are
linear recurrent. The recurrence they satisfy is very elegant and the characteristic polynomial of the re-
currence can be expressed in terms of some known polynomials. Explicitely, let 0 ≤ k1 < · · · < ks be
fixed integers and r = blog2(ks)c + 1. The sequence {S(en,[k1,...,ks])}n∈N satisfies the homogenuous linear
recurrence whose characteristic polynomial is given by

(X − 2)Φ4(X − 1) · · ·Φ2r (X − 1),

where Φn(X) represents the n-th cyclotomic polynomial. This result is a consequence of the following
theorem of Cai et al. ([4]).

Theorem 1.1 ([4]). Let 1 ≤ k1 < · · · < ks be fixed integers and r = blog2(ks)c + 1. The value of the
exponential sum S(en,[k1,··· ,ks]) is given by

S(en,[k1,··· ,ks]) = c0(k1, · · · , ks)2n +

2r−1∑
j=1

cj(k1, · · · , ks)(1 + ζj)
n,

where ζj = e
πi j

2r−1 , i =
√
−1 and

(5) cj(k1, · · · , ks) =
1

2r

2r−1∑
t=0

(−1)(
t
k1

)+···+( tks)ζ−tj .

Recently, some cryptographic applications beyond characteristic 2 have been found. That has prompted
new research in exponential sums of type (1) and some of the results available for the binary field have been
extended to other finite fields [11, 12, 16, 17, 18, 19]. In particular, in [12], Theorem 1.1 was extended to
general finite fields.

Theorem 1.2 ([12]). Let n and k > 1 be positive integers, p be a prime and q = pr with r ≥ 1. Let

D = pblogp(k)c+1. Then,

SFq (en,k) =

D−1∑
j1=0

j1∑
j2=0

· · ·
jq−2∑
jq−1=0

cj1,··· ,jq−1
(k)
(

1 + ξ−j1D + · · ·+ ξ
−jq−1

D

)n
,

where

cj1,··· ,jq−1
(k) =

1

Dq−1

D−1∑
bq−1=0

· · ·
D−1∑
b1=0

ξ
Tr

(
F

(p)
k;Fq (b1,··· ,bq−1)

)
p

∑
(j′1,··· ,j′q−1)∈Sym(j1,··· ,jq−1)

ξ
j′1bq−1+···+j′q−1b1
D ,

ξm = exp(2πi/m), Tr = TrFq/Fp and F
(p)
k;Fq (b1, · · · , bq−1) represents the value of en,k on a tuple x ∈ Fnq with

the property that x has bj entries equal to αj where Fq = {0, α1, α2, · · · , αq−1}. In particular, the sequence
{SFq (en,k)} satisfies the linear recurrence with integer coefficients whose characteristic polynomial is given
by

Pq,k(X) =

D−1∏
a1=0

∏
0≤a2≤a1

· · ·
∏

0≤aq−1≤aq−2

(
X −

(
1 + ξa1D + · · ·+ ξ

aq−1

D

))
.

Our goal in this work is to express Pq,k(X) in terms of known polynomials (as it was the case of the
binary case). That is a very challenging problem, but an useful one. Knowing the explicit coefficients of the
characteristic polynomial will allow us to better implement the recurrences on the machine. That, in turns,
will allow us to explore cryptographic properties of these functions when the number of variables grows.

We study first the case q = 3 and then move to other examples. Some simple knowledge of Galois theory
is required to read this article.

2. The simple cases

The goal is to express P3,k(X) in terms of some known polynomials. Observe that in order to achieve

this goal, we must calculate the minimal polynomial over Q for each 1 + ξaD + ξbD where D = 3blog3(k)c+1 and
0 ≤ b ≤ a ≤ D − 1.
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Calculating these minimal polynomials can be a challenge. However, some cases are simple. We start
with them. Before we proceed, observe that the minimial polynomial of 1 + ξaD + ξbD is a shift of the minimal
polynomial of ξaD + ξbD, thus, in some instances we will work with ξaD + ξbD.

Let r = blog3(k)c+1. The first simple case is when a = b. In that case, we are working with the algebraic
integer 1 + 2ξa3r . If a = 0, then it is clear that the minimal polynomial is given X − 3 and therefore, X − 3 is
a factor of P3,k(X). When a ≥ 1 the analysis is reduced to finding the minimal polynomials of 1 + 2ξ3` for

1 ≤ ` ≤ r. The minimal polynomial of 2ξ3` over Q is given by 22·3`−1

Φ3` (X/2) and therefore

22·3`−1

Φ3`

(
X − 1

2

)
is the minimal polynomial of 1 + 2ξ3` and a factor of P3,k(X) for ` = 1, . . . , r.

Another simple case is when the algebraic number in consideration is 2 + ξa3r . This case is reduced to
finding the minimal polynomial of 2 + ξ3` for 1 ≤ ` ≤ r. The minimal polynomial of 2 + ξ3` over Q is given
by Φ3`(X − 2) and therefore

Φ3`(X − 2)

is a factor of P3,k(X) for ` = 1, . . . , r.
Since all these polynomials are relatively prime to each other, then we have the following result.

Proposition 2.1. Let k > 1 and r = blog3(k)c+ 1. Then,

(6) (X − 3)

r∏
`=1

22·3`−1

Φ3`

(
X − 1

2

) r∏
`=1

Φ3`(X − 2)

divides P3,k(X).

Observe that in the general case, that is, when q = pt with p prime and we are working over Fq, we are
interested in finding the minimial polynomials of algebraic integers of the form

(7) 1 + ξa1D + · · ·+ ξ
aq−1

D ,

where D = pblogp(k)c+1 and 0 ≤ aq−1 ≤ aq−2 ≤ · · · ≤ a2 ≤ a1 ≤ D − 1. Of course, the algebraic integers

(8) s+ (q − s)ξaD,
where 1 ≤ s ≤ q − 1, are of type (7). Therefore, the same argument as before leads to the following result.

Proposition 2.2. Let p be an prime, q = pt, k > 1 and r = blogp(k)c+ 1. Then,

(9) (X − q)
q−1∏
s=1

r∏
`=1

(q − s)(p−1)·p`−1

Φp`

(
X − s
q − s

)
divides Pq,k(X).

The remaining cases are not as simple of the ones discussed already. Again, we work first over F3. The
remaining cases are reduced to study the minimal polynomials of ξa3m + ξb3l for gcd(a, 3) = gcd(b, 3) = 1 and
1 ≤ ` ≤ m ≤ r. From now on, we use Galois Theory in our study. This is standard when studying minimal
polynomials.

3. The case of ξ3m + ξ3` when 1 ≤ l < m ≤ r

Let αm,` = ξ3m + ξ3` and µαm,`;Q(X) be the minimal polynomial of αm,` over Q. The first step in our
analysis is to find the degree of µαm,`;Q(X).

It is well-known from Galois Theory that

G = Gal(Q(ξ3m)/Q) ' Z×3m ,
where Z×3m represents the group of units modulo 3m. This implies that the degree of the extension Q(ξ3m)/Q
is given by

[Q(ξ3m) : Q] = |Z×3m | = ϕ(3m) = 2 · 3m−1.

Suppose that σj ∈ G is such that σj(ξ3m) = ξj3m where 1 ≤ j < 3m is relatively prime to 3. Note that

(10) σj(αm,`) = ξj3m + ξj
3`
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becuase σj is a Q-automorphism. Thus, ξj3m +ξj
3`

is a conjugate of ξ3m +ξ3` . Observe that if j, k are integers
relatively prime to 3 and

(11) ξj3m + ξj
3`

= ξk3m + ξk3` ,

then it must be true that j ≡ k mod 3m. This implies that αm,` has at least 2 · 3m−1 conjugates, that is,

[Q(αm,`) : Q] ≥ 2 · 3m−1.

But it is clear that Q(αm,`) ⊆ Q(ξ3m), thus

[Q(αm,`) : Q] = 2 · 3m−1.

We conclude that deg(µαm,`;Q(X)) = 2 · 3m−1.
The next step is to calculate µαm,`(X). It turns out that in some instances, like the one we are going

to present, it is easier to calculate the product of some of minimal polynomials than calculating them
individually. We start with the following standard result from Galois Theory.

Lemma 3.1. Suppose that f(X) ∈ Z[X] and let α be an algebraic integer over Q. Suppose that

α = α1, α2, · · · , αr
are all the conjugates of α. Then,

r∏
j=1

f(X − αj) ∈ Z[X].

Proof. As just mentioned, this is a standard result from Galois Theory. Suppose that mα(X) is the minimal
polynomial of α over Q (which has coefficients in Z). Let G = GalQ(mα(X)) and let

g(X) =
∏
σ∈G

f (X − σ(α)) .

Observe that if τ ∈ G, then

τ(g(X)) =
∏
σ∈G

f (X − τσ(α))

=
∏
σ∈G

f (X − σ(α))

= g(X).

That implies that the coefficients of g(X) are fixed for every τ ∈ G and therefore they must belong to Q.
The assumption of α implies that they are actually in Z. This conclude the proof. �

Proposition 3.2. Let 1 ≤ ` < m be integers and j an integer such that gcd(j, 3) = 1. Let µξ3m+ξj
3`

;Q(X) be

the minimal polynomial of ξ3m + ξj
3`

over Q. Then,

(12)

3`−1∏
gcd(j,3)=1

µξ3m+ξj
3`

;Q(X) =

3`−1∏
gcd(j,3)=1

Φ3m(X − ξj
3`

)

Proof. Consider the polynomial

(13) f(X) =

3`−1∏
gcd(j,3)=1

Φ3m(X − ξj
3`

).

Since we are running over all the conjugates of ξ3` , the previous lemma implies f(X) ∈ Z[X]. But then,
µξ3m+ξj

3`
,Q(X) divides f(X). The polynomials µξ3r+ξj

3`
,Q(X)’s are relatively prime to each other, thus

(14)

3`−1∏
gcd(j,3)=1

µξ3m+ξj
3`
,Q(X) divides f(X) =

3`−1∏
gcd(j,3)=1

Φ3m(X − ξj
3`

).
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Both polynomials in (14) are monic and of the same degree, therefore

(15)

3`−1∏
gcd(j,3)=1

µξ3m+ξj
3`
,Q(X) =

3`−1∏
gcd(j,3)=1

Φ3m(X − ξj
3`

).

Thus, multiplying these shifted cyclotomic polynomials gives us the product of the minimal polynomials over
Q of the elements ξ3m + ξj

3`
�

An immediate consequence of the previous result is the following.

Corollary 3.3. Let k > 1 and r = blog3(k)c+ 1. The polynomial

(16)

r∏
m=2

m−1∏
`=1

3`−1∏
gcd(j,3)=1

Φ3m(X − 1− ξj
3`

)

divides P3,k(X).

These results can be extended to Fq, q odd, without too much effort. Observe that the algebraic integers

(17) s+

(
q − s

2

)
ξpm +

(
q − s

2

)
ξj
p`
,

where s = 1, 3, 5, . . . , q − 2, 1 ≤ ` < m, and gcd(j, p) = 1 are of type (7). Therefore, the same argument as
before yields

(18)

p`−1∏
gcd(j,p)=1

µ( q−s2 )ξpm+( q−s2 )ξj
p`
,Q(X) =

p`−1∏
gcd(j,p)=1

(
q − 1

2

)(p−1)pm−1

Φpm

(
2X

q − 1
− ξj

p`

)
.

That leads to the following result.

Corollary 3.4. Let p be an odd prime, q = pt, k > 1 and r = blogp(k)c+ 1. The polynomial

(19)

r∏
m=2

m−1∏
`=1

q−2∏
s=1,odd

p`−1∏
gcd(j,p)=1

(
q − s

2

)(p−1)pm−1

Φpm

(
2(X − 1)

q − s
− ξj

p`

)
divides Pq,k(X).

These results take care of the case considered in this section. Observe that we are still missing the case
when the algebraic integer in consideration is 1 + ξa3m + ξb3m with gcd(a, 3) = gcd(b, 3) = 1.

4. The case of ξ3m + ξj3m with gcd(j, 3) = 1

Let 1 ≤ a, b < 3m be integers such that gcd(a, 3) = gcd(b, 3) = 1 and let βa,b = ξa3m + ξb3m . As before, let
G = Gal(Q(ξ3m)/Q) ' Z×3m . Let σk ∈ G with gcd(k, 3) = 1 be such that

σk(ξ3m) = ξk3m .

Then,

(20) σk(βa,b) = ξak3m + ξbk3m

and ξak3m + ξbk3m is a conjugate of βa,b for every k such that gcd(k, 3) = 1.
Suppose that k, ` are integers such that gcd(k, 3) = gcd(`, 3) = 1 and

ξak3m + ξbk3m = ξa`3m + ξb`3m .

Then, it must be true that either k ≡ ` mod 3m, which is trivial, or

ak ≡ b` mod 3m

bk ≡ a` mod 3m.

This system of congruences implies that k ≡ a−1b` mod 3m and so a2 ≡ b2 mod 3m. Therefore, if

a 6≡ −b mod 3m,

then [Q(βa,b) : Q] = 2 · 3m−1. On the other hand, if a ≡ −b mod 3m, then [Q(βa,−a) : Q] = 3m−1.
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We discuss the case ξa3m + ξ−a3m later. For the case a 6≡ ±b mod 3m, Galois Theory tells us that

(21) µβa,b;Q(X) =

3m−1∏
gcd(j,3)=1

(X − ξaj3m − ξ
bj
3m).

Expressing this polynomial in terms of special polynomials or writing its coefficients explicitely in Z is not
an easy task. There is, however, some instances on which that can be achieved.

Consider the case when

b = a
(
3m−1 + 1

)
.

where gcd(a, 3) = 1. Since the numbers ξa3m + ξ
(3m−1+1)a
3m , for a ∈ Z×3m , are conjugates, then it is sufficient to

work with the algebraic integer ξ3m + ξ3m−1+1
3m .

Proposition 4.1. Let m > 1 be a positive integer. The minimal polynomial of γm = ξ3m + ξ3m−1+1
3m over Q

is given by

µγm;Q(X) = Φ2·3m(X) = X2·3m−1

−X3m−1

+ 1.

Proof. We first show that γm is a root of unity. Observe that

γm = ξ3m + ξ3m−1+1
3m

= cos

(
2π

3m

)
+ i sin

(
2π

3m

)
+ cos

(
2π

3m
(3m−1 + 1)

)
+ i sin

(
2π

3m
(3m−1 + 1)

)
= cos

(
2π

3m

)
+ i sin

(
2π

3m

)
+ cos

(
2π

3m
+

2π

3

)
+ i sin

(
2π

3m
+

2π

3

)
= cos

(
2π

3m

)
+ i sin

(
2π

3m

)
− sin

(
2π

3m
+
π

6

)
+ i cos

(
2π

3m
+
π

6

)
,

where the last equality is a consequence of the identities

cos

(
θ +

2π

3

)
= − sin

(
θ +

π

6

)
and sin

(
θ +

2π

3

)
= cos

(
θ +

π

6

)
.

The well-known identites

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β),

imply

sin

(
2π

3m
+
π

6

)
=

√
3

2
· sin

(
2π

3m

)
+

1

2
· cos

(
2π

3m

)
cos

(
2π

3m
+
π

6

)
=

√
3

2
· cos

(
2π

3m

)
− 1

2
· sin

(
2π

3m

)
,

and therefore

γm =
1

2
cos

(
2π

3m

)
−
√

3

2
sin

(
2π

3m

)
+ i

(
1

2
sin

(
2π

3m

)
+

√
3

2
cos

(
2π

3m

))
.

A straightforward calculation leads to |γm| = 1. Thus, γm is a root of unity.
The next step is to calculate the argument of γm. Recall that if z = x+ iy ∈ C, then

arg(z) = tan−1(y/x).

The imaginary part of γm over its real part is given by

1/2 · sin(2π/3m) +
√

3/2 · cos(2π/3m)

1/2 · cos(2π/3m)−
√

3/2 · sin(2π/3m)
=

tan(2π/3m) +
√

3

1−
√

3 · tan(2π/3m)

=
tan(2π/3m) + tan(π/3)

1− tan(π/3) tan(2π/3m)
.
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The identity

tan(α+ β) =
tan(α) + tan(β)

1− tan(α) tan(β)

implies

arg(γm) = tan−1

(
tan

(
(3m−1 + 2)π

3m

))
=

(3m−1 + 2)π

3m
.

All of the above implies that

γm = exp

(
(3m−1 + 2)πi

3m

)
and thus, γm is a root of the polynomial X3m + 1. Recall that

X3m + 1 =

m∏
j=0

Φ2·3j (X).

Since [Q(γm) : Q] = 2 · 3m−1, it is clear that γm is not a root of Φ2·3j (X) for 0 ≤ j ≤ m− 1. Therefore γm
must be a root of

Φ2·3m(X) = X2·3m−1

−X3m−1

+ 1.

Since [Q(γm),Q] = 2 · 3m−1, then µγm;Q(X) = Φ2·3m(X). This concludes the proof. �

Corollary 4.2. Let k > 1 be an integer and r = blog3(k)c+ 1. Then,

(22)

r∏
`=1

Φ2·3`(X − 1)

divides P3,k(X).

The above result depends heavily on the fact that we are working with the prime p = 3, thus, it cannot
be extended to the general case of Fq. It can be extended, however, to the case when q is a power of three.

Corollary 4.3. Let k > 1 be an integer, q = 3t and r = blog3(k)c+ 1. Then,

(23)

q−2∏
s=1,odd

r∏
`=1

(
q − s

2

)2·3`−1

Φ2·3`

(
2(X − 1)

q − s

)
divides Pq,k(X).

We now discuss the case ξa3m + ξ−a3m for a ∈ Z×3m . Again, since ξa3m + ξ−a3m ’s are all conjugates of ξ3m + ξ−1
3m ,

it is enough to study this last algebraic integer. We start with the following result from Abhyankar, Cohen,
and Zieve [2].

Theorem 4.4 ([2]). Let n > 3 be an odd integer. The minimal polynomial of ξn + ξ−1
n is a factor of

U(n−1)/2

(
X

2

)
+ U(n−3)/2

(
X

2

)
where Um(X) represents the m-th Chebyshev polynomial of the second kind, that is,

sin((m+ 1)θ) = Um(cos(θ)) sin(θ).

Proof. The argument of this proof is from [2]. We decided to include it in order to get insight on the
machinery used.

Recall that

(24) ξn + ξ−1
n = 2 cos

(
2π

n

)
.

The m-th Chebyshev polynomial of the first kind Tm(X) satisfies

(25) cos(mθ) = Tm(cos(θ)).

Therefore,

(26) Tm

(
ξn + ξ−1

n

2

)
= Tm

(
cos

(
2π

n

))
= cos

(
2πm

n

)
=
ξmn + ξ−mn

2
.
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Observe that this implies that

(27) Tm

(
X +X−1

2

)
=
Xm +X−m

2

for infinite values of X, thus they must be equal as rational functions. In particular,

(28) Tn

(
ξn + ξ−1

n

2

)
=
ξnn + ξ−nn

2
= 1,

Therefore, γn = ξn + ξ−1
n is a root of Tn(X/2)− 1.

Observe that

(29) Tn

(
X +X−1

2

)
+ 1 =

1

2

(
X1/2 −X−1/2

)2
(
Xn/2 −X−n/2

X1/2 −X−1/2

)2

.

The first factor can be written as

(30)
1

2

(
X1/2 −X−1/2

)2

=
1

2

(
X − 2 +X−1

)
=

1

2

(
X +X−1

)
− 1.

For the second one, observe that

Xn/2 −X−n/2

X1/2 −X−1/2
=

(
Xn/2 −X−n/2

X1/2 −X−1/2

)(
X1/2 +X−1/2

X1/2 +X−1/2

)
(31)

=
X(n+1)/2 −X(1−n)/2 +X(n−1)/2 −X(−1−n)/2

X −X−1

=
X(n+1)/2 −X(−1−n)/2

X −X−1
+
X(n−1)/2 −X(1−n)/2

X −X−1
.

An argument similar to the one given for the m-th Chebyshev polynomial of the first kind shows that the
m-th Chebyshev polynomial of the second kind satisfies the functional equation

(32) Um

(
X +X−1

2

)
=
Xm+1 −X−1−m

X −X−1
.

Thus, (31) and (32) implies

(33)
Xn/2 −X−n/2

X1/2 −X−1/2
= U(n−1)/2

(
X +X−1

2

)
+ U(n−3)/2

(
X +X−1

2

)
.

Therefore, (26), (30) and (33) implies

(34) Tn

(
X +X−1

2

)
+ 1 =

(
1

2

(
X +X−1

)
− 1

)(
U(n−1)/2

(
X +X−1

2

)
+ U(n−3)/2

(
X +X−1

2

))2

The change of variable t = X +X−1 give us

(35) Tn(t/2) + 1 =
1

2
(t− 2)

(
U(n−1)/2(t/2) + U(n−3)/2(t/2)

)2
.

Since ξn 6= −1, then γn is a root of

(36) U(n−1)/2

(
X

2

)
+ U(n−3)/2

(
X

2

)
.

Therefore, the minimal polynomial of γn = ξn + ξ−1
n is a factor of (36). This concludes the proof. �

This result can be used to identify factors of P3,k(X), in particular, we have the following result. The
result is written in general form, that is, for p > 2 odd.

Proposition 4.5. Let p > 2 be a prime and r > 1 an integer. Then,

(37)

r∏
m=1

µξpm+ξ−1
pm

;Q(X) = U(pr−1)/2

(
X

2

)
+ U(pr−3)/2

(
X

2

)
.
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Proof. Let 1 ≤ m ≤ r. Observe that

(38) Tpr

(
ξpm + ξ−1

pm

2

)
=
ξp
r

pm + ξ−p
r

pm

2
= 1.

Therefore, ξpm + ξ−1
pm is a root of

(39) Tpr (X/2) =
1

2
(X − 2)

(
U(pr−1)/2(X/2) + U(pr−3)/2(X/2)

)2
.

and thus a root of

(40) U(pr−1)/2(X/2) + U(pr−3)/2(X/2).

This implies that µξpm+ξ−1
pm

;Q(X) divides the polynomial (40) for every 1 ≤ m ≤ r and thus

(41)

r∏
m=1

µξpm+ξ−1
pm

;Q(X)

divides the polynomial (40). However, we know that

[Q(ξpm + ξ−1
pm) : Q] =

pm−1(p− 1)

2

therefore,

deg

(
r∏

m=1

µξpm+ξ−1
pm

;Q(X)

)
=

r∑
m=1

pm−1(p− 1)

2
(42)

=
pr − 1

2
.

Since the polynomials (40) and (41) are of the same degree, both are monic and (41) divides (40), then they
are equal. This concludes the proof. �

Corollary 4.6. Let p > 1 be a prime and r > 1 an integer. Then,

(43) µξpm+ξ−1
pm

(X) =
U(pr−1)/2 (X/2) + U(pr−3)/2 (X/2)

U(pr−1−1)/2 (X/2) + U(pr−1−3)/2 (X/2)
,

where Un(X) represents the n-th Chebyschev polynomial of the second kind.

Corollary 4.7. Let k > 1 be an integer and r = blog3(k)c+ 1. Then,

(44) U(3r−1)/2

(
X − 1

2

)
+ U(3r−3)/2

(
X − 1

2

)
,

where Un(X) represents the n-th Chebyschev polynomial of the second kind, divides P3,k(X).

This result can be extended to Fq. Observe that the algebraic integers

(45) s+

(
q − s

2

)
ξpm +

(
q − s

2

)
ξ−1
pm ,

where s = 1, 3, 5, . . . , q − 2 are of type (7). Therefore, we have the following result.

Corollary 4.8. Let p be an odd prime, q = pt, k > 1 be an integer and r = blogp(k)c+ 1. Then,

(46)

q−2∏
s=1,odd

(
q − s

2

) pr−1
2
(
U(pr−1)/2

(
X − s
q − s

)
+ U(pr−3)/2

(
X − s
q − s

))
,

where Un(X) represents the n-th Chebyschev polynomial of the second kind, divides Pq,k(X).
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We are still missing the minimal polynomials of ξ3m + ξa3m where

a ∈ Z×3m \ {1, 3m − 1, 3m−1 + 1, 2 · 3m−1 + 1}.
Let

Tm := Z×3m \ {1, 3m − 1, 3m−1 + 1, 2 · 3m−1 + 1}.
These polynomials are hard to calculate explicitely. Of course, using Galois theory we can state that

(47) µξ3m+ξa
3m

;Q(X) =

3m−1∏
gcd(j,3)=1

(
X − ξj3m − ξ

aj
3m

)
.

and we may be tempted to say

(48)

r∏
m=1

∏
a∈Tm

3m−1∏
gcd(j,3)=1

(
X − 1− ξj3m − ξ

aj
3m

)
divides P3,k(X). However, we must be careful because (48) is not squarefree. That is because if a ∈ Tm and

a−1 represents the inverse of a as an element of (Z/3mZ)×, then

(49)

3m−1∏
gcd(j,3)=1

(
X − 1− ξj3m − ξ

aj
3m

)
=

3m−1∏
gcd(j,3)=1

(
X − 1− ξj3m − ξ

a−1j
3m

)
because 1 + ξ3m + ξa3m and 1 + ξ3m + ξa

−1

3m are conjugates (apply to 1 + ξ3m + ξa3m the Q-automophism that

sends ξ3m to ξa
−1

3m ). Therefore, once we choose a ∈ Tm and calculate

3m−1∏
gcd(j,3)=1

(
X − 1− ξj3m − ξ

aj
3m

)
we ignore the polynomial produced by choosing a−1.

There is always the possibility that we choose an a ∈ (Z/3mZ)× that is its own inverse. However, it is
not hard to show that x2 = 1 has only two solutions in (Z/3mZ)×, i.e. ±1 and ±1 /∈ Tm by definition.
Therefore, for every a ∈ Tm, we have that a−1 ∈ Tm and a 6= a−1. Since |Tm| = 2 · 3m−1 − 4, write

Tm = {a1, a2, . . . , a3m−1−2, a
−1
1 , a−1

2 , . . . , a−1
3m−1−2}.

and define Vm as

(50) Vm := {a1, a2, . . . , a3m−1−2}.
Then the polynomial

(51)

r∏
m=1

∏
a∈Vm

3m−1∏
gcd(j,3)=1

(
X − 1− ξj3m − ξ

aj
3m

)
divides P3,k(X).

All the information given so far can be put together to express P3,k(X) in terms of known polynomials.
In particular, we have the following result.

Theorem 4.9. Let k > 1 be an integer and r = blog3(k)c + 1. The sequence {SF3
(en,k)} satisfies the

homogeneous linear recurrence with integer coefficients whose characteristic polynomial is given by

(X − 3)

r∏
`=1

22·3`−1

Φ3`

(
X − 1

2

) r∏
`=1

Φ3`(X − 2)

r∏
m=2

m−1∏
`=1

3`−1∏
gcd(j,3)=1

Φ3m(X − 1− ξj
3`

)(52)

×
(
U(3r−1)/2

(
X − 1

2

)
+ U(3r−3)/2

(
X − 1

2

)) r∏
`=1

Φ2·3`(X − 1)

×
r∏

m=1

∏
a∈Vm

3m−1∏
gcd(j,3)=1

(
X − 1− ξj3m − ξ

aj
3m

)
,
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where ξn = exp(2πi/n), Φn(X) is the n-th cyclotomic polynomial and Un(X) is the n-th Chebyshev polyno-
mial of the second kind.

For the general case, the results given in this article can be used to find a factor of the polynomial Pq,k(X)
in terms of known polynomials. A formula for Pk,q(X) similar to the one provided on Theorem 4.9 remains
open.

Acknowledgments. The research of the second author was supported by UPR-FIPI 7240022.00 and by
The Puerto Rico Science, Technology and Research Trust (PRST) under agreement number 2020-00124.
This content is only the responsibility of the authors and does not necessarily represent the official views
of The Puerto Rico Science, Technology and Research Trust. The first, third and fourth authors were also
supported as students by the same grant (PRST). The first author also acknowledges the support of the
project PRLS-AMP. The fourth author also acknowledges the support of the Francis N. Castro Scholarship
(NSF-DUE 2030188).

References

[1] O. Aberth. The elementary symmetric functions in a finite field of primer order. Illinois J. Math. 8(1) (1964), 132–138.

[2] S. S. Abhyankar, S. D. Cohen, and M. E. Zieve. Bivariate factorizations connecting Dickson polynomials and Galois theory.

Trans. Amer. Math. Soc. 352 (2000) 2871–2887.
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