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Abstract. Exponential sums of symmetric Boolean functions are linear recurrent with integer coefficients.

This was first established by Cai, Green and Thierauf in the mid nineties. Consequences of this result has

been used to study the asymptotic behavior of symmetric Boolean functions. Recently, Cusick extended it
to rotation symmetric Boolean functions, which are functions with good cryptographic properties. In this

article, we put all these results in the general context of Walsh transforms and some of its generalizations
(nega-Hadamard transform, for example). Precisely, we show that Walsh transforms, for which exponential

sums are just an instance, of symmetric and rotation symmetric Boolean functions satisfy linear recurrences

with integer coefficients. We also provide a closed formula for the Walsh transform and nega-Hadamard
transform of any symmetric Boolean functions. Moreover, using the techniques presented in this work, we

show that some families of rotation symmetric Boolean functions are not bent when the number of variables

is sufficiently large and provide asymptotic evidence to a conjecture of Stănică and Maitra.

1. Introduction

The Digital Revolution has brought some branches of Discrete Mathematics to center stage. One of the
most notable examples is the Theory of Boolean functions. These beautiful combinatorial objects have appli-
cations to different scientific areas, like information theory, electrical engineering, game theory, cryptography
and coding theory.

Memory restrictions of current technology have made the problem of efficient implementations of Boolean
functions a challenging one. In general, this problem is very hard to tackle, but imposing conditions on these
functions may ease the problem. For instance, the class of symmetric Boolean functions and the class of
rotation symmetric Boolean functions are good candidates for efficient implementations. These two classes
are part of the main focus of this article.

In many applications, especially ones related to cryptography, it is important for Boolean functions to be
balanced. A balanced Boolean function is one for which the number of zeros and the number of ones are equal
in its truth table (output table). Balancedness can be studied from the point of view of Hamming weights or
from the point of view of exponential sums. The class of symmetric Boolean functions have been intensively
studied in this regard [3, 5, 6, 7, 10, 11, 13]. The problem of balancedness of symmetric Boolean functions
is, however, far from settled. There are open problems even for the relatively simple case of elementary
symmetric functions (see [11]).

The study of exponential sums of symmetric Boolean functions led to the discovery that these sums, when
viewed as integer sequences, are linear recurrent with integer coefficients. This was first established by Cai,
Green and Thierauf in the mid nineties. Part of that study was continued in [5] where the recursive nature
of these exponential sums was used to analyze the asymptotic behavior of them. In particular, the authors
of [5] proved that a conjecture by Cusick, Li and Stănică [11] about balancedness of elementary symmetric
polynomials is true asymptotically. The study presented in [5] was later extended to some perturbations
of symmetric Boolean functions [6]. Also, the recursive nature of these sums was exploited in [7] to study
modular properties of them.

Symmetry, however, is too special a property and may imply that implementations of symmetric Boolean
functions, while efficient, may be vulnerable to attacks. Pieprzyk and Qu [20] introduced rotation symmetric
Boolean functions (although, they did appear before in the work of Filiol and Fontaine [15] as idempotents).
These functions, as mentioned before, are good candidates for efficient implementations. However, Pieprzyk
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and Qu showed that these functions are useful, among other things, in the design of fast hashing algorithms
with strong cryptographic properties. The combination of efficiency and strong cryptographic properties
sparked interest in them and today their study is an active area of research [1, 12, 13, 14, 16, 17, 27, 28].

Weights of rotations symmetric Boolean functions has been a subject of research [1, 12, 13, 27]. As in
the symmetric case, early studies hinted the possibility that weights of rotation symmetric Boolean function
satisfy linear recurrences with integer coefficients. Specifically, it was observed that weights of cubic rotation
symmetric Boolean functions are linear recurrent [1, 12]. Recently, Cusick [9] showed that weights of any
rotation symmetric Boolean function satisfy linear recurrences with integer coefficients.

The goal of this article is to put all these results in the more general framework of Walsh transformations
and their generalizations. These transformations, for which exponential sums are just an instance, have ap-
plications to fields like statistics, modern communications systems, error-correcting codes and cryptography.
Walsh transforms are particularly useful in the calculation of nonlinearity (maximum Hamming distance
from the set of all affine functions) of Boolean functions – a concept very useful in cryptography. Boolean
functions with the highest nonlinearity are known as bent functions, which only exist for even dimension.
There are various ways to construct some families of bent functions, but their total number or their complete
classification is not known.

This article is divided as follows. In the next section we present some preliminaries results. Most of the
important results are presented in Section 3. In particular, we show that Walsh transformations of symmetric
and rotation symmetric Boolean functions are linear recurrent with integer coefficients. We also provide a
closed formula for the Walsh transformation of any symmetric Boolean function. These generalize all the
known results about this topic for exponential sums of these functions. Moreover, using the techniques
presented in this work, we show that some families of rotation symmetric Boolean functions are not bent
when the number of variables is sufficiently large. We also provide asymptotic evidence to a conjecture of
Stănică and Maitra [27] and show that roots of the characteristic polynomial of a linear recurrence associated
to Walsh transformations of any family of Boolean functions {Fn}n are bounded in modulus by 2. This last
result can be used to analyzed the asymptotic behavior of these families. In Section 4 we show that most of
these results can be extended to the nega-Hadamard transform. In particular, we provide a closed formula
for the nega-Hadamard transform of any symmetric Boolean function. Finally, in the last section, we show
that most of these results can be extended further to some generalizations of Walsh transform.

2. Preliminaries

Let F2, Fn2 be the binary field, respectively, the n-dimensional vector space over F2. A function F : Fn2 →
F2 is called a Boolean function. The set of all n variables Boolean functions will be denoted by Bn.

A function F ∈ Bn is said to be symmetric if it is invariant under the action of the symmetric group Sn
on Fn2 , that is, if

F (σ(X1, . . . , Xn)) = F (X1, . . . , Xn)

for every permutation σ ∈ Sn. On the other hand, a function F ∈ Bn is said to be rotation symmetric if it
is invariant under the action of the cyclic group Cn on Fn2 . Let us explain this further. Our explanation is
similar to the one presented in [27] and uses the notation from [4].

Let Xi ∈ F2 for 1 ≤ i ≤ n. Define, for 1 ≤ k ≤ n, the shift function

Ekn(Xi) =

{
Xi+k if i+ k ≤ n,
Xi+k−n if i+ k > n.

Extend this definition to Fn2 by defining

Ekn(X1, X2, . . . , Xn) = (Ekn(X1), Ekn(X2), . . . , Ekn(Xn)).

The shift function Ekn can also be extended to monomials via

Ekn(Xi1Xi2 · · ·Xit) = Ekn(Xi1)Ekn(Xi2) · · ·Ekn(Xit).

A Boolean function F in n variables is a rotation symmetric Boolean function if and only if for any
(X1 · · · , Xn) ∈ Fn2 ,

F (Ekn(X1, . . . , Xn)) = F (X1, . . . , Xn),

for every 1 ≤ k ≤ n.
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Rotation symmetric Boolean functions (by this name) were introduced by Pieprzyk and Qu [20]. As
mentioned in the introduction, they showed that these functions are useful, among other things, in the
design of fast hashing algorithms with strong cryptographic properties.

A Boolean functions F ∈ Bn can be identified with a multi-variable Boolean polynomial, known as the
algebraic normal form (or ANF for short) of the Boolean function. The degree of a Boolean function is
simply the degree of its ANF. Symmetric and rotation symmetric Boolean functions are very well-structured
functions and this is reflected on their ANFs. Let us elaborate more about what we just said. The symbol
⊕ is used to denote addition in F2.

It is a well-established result in the theory of Boolean functions that the ANF of any symmetric Boolean
function is a linear combination of elementary symmetric Boolean polynomials. To be more precise, let ek(n)
be the elementary symmetric polynomial in n variables of degree k. For example,

e3(4) = X1X2X3 ⊕X1X4X3 ⊕X2X4X3 ⊕X1X2X4.

Every symmetric Boolean function F ∈ Bn can be identified with an expression of the form

(2.1) F (X) = ek1(n)⊕ ek2(n)⊕ · · · ⊕ eks(n),

where 0 ≤ k1 < k2 < · · · < ks are integers. For the sake of simplicity, the notation e[k1,...,ks](n) is used to
denote (2.1). For example,

e[2,1](3) = e2(3)⊕ e1(3)(2.2)

= X1X2 ⊕X3X2 ⊕X1X3 ⊕X1 ⊕X2 ⊕X3.

On the other hand, suppose that R ∈ Bn is a rotation symmetric Boolean function. For the sake of
simplicity, let us say that n = 5. Assume that X1X2X3 is part of the ANF of the function. Then, the terms

E1
5(X1X2X3) = X2X3X4

E2
5(X1X2X3) = X3X4X5

E3
5(X1X2X3) = X4X5X1

E4
5(X1X2X3) = X5X1X2

are also part of its ANF. Similarly, suppose that X1X3 is also a term of the ANF. Then,

X2X4, X3X5, X4X1, X5X2

are also part of the ANF. An example of a rotation symmetric Boolean function with this property is given
by

R(X) =X1X2X3 ⊕X2X3X4 ⊕X3X4X5 ⊕X4X5X1 ⊕X5X1X2⊕
X1X3 ⊕X2X4 ⊕X3X5 ⊕X4X1 ⊕X5X2.

(2.3)

The above discussion tells us that once a monomial Xi1 · · ·Xit is part of the ANF of a rotation symmetric
Boolean function, so is Ekn(Xi1 · · ·Xit) for all 1 ≤ k ≤ n. Let 1 < j1 < · · · < js be integers. A rotation
symmetric Boolean function of the form

(2.4) Rj1,...,js(n) = X1Xj1 · · ·Xjs ⊕X2Xj1+1 · · ·Xjs+1 ⊕ · · · ⊕XnXj1−1 · · ·Xjs−1,

where the indices are taken modulo n and the complete system of residues is {1, 2, . . . , n}, is called a monomial
rotation symmetric Boolean function. We say that Rj1,...,js(n) is long cycle, if the period is n, like the one
above, and short cycle, if the period is a nontrivial divisor of n; for example, R3(4) = X1X3 ⊕ X2X4 is a
short cycle.

The rotation symmetric Boolean function (2.3) is given by

R(X) = R2,3(5)⊕R3(5).

In the literature (see [9]), the notation (1, j1, . . . , js)n is often used to represent the monomial rotation
Boolean function (2.4).

As mentioned earlier, Boolean functions have applications to many scientific fields. In some applications
related to cryptography it is important for Boolean functions to be balanced. Balancedness of Boolean
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functions is often studied from the point of view of exponential sums. The exponential sum of an n-variable
Boolean function F (X) is defined as the sum

S(F ) =
∑
x∈Fn2

(−1)F (x).

Observe that F ∈ Bn is balanced if and only if S(F ) = 0.
In [2, 5], sequences of the form {S(e[k1,...,ks](n))}n were considered. In particular, it was showed – first in

[2] and later in [5] – that these sequences satisfies linear recurrences with integer coefficients. To be specific,
they proved the following result:

Theorem 2.1. Let 1 ≤ k1 < · · · < ks be integers and let r = blog2(ks)c+1. The sequence {S(e[k1,...,ks(n))}n
satisfies the linear recurrence whose characteristic polynomial is given by

(2.5) (X − 2)Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1),

where Φm(X) represents the m-th cyclotomic polynomial.

This theorem was used in [5] to calculate the asymptotic behavior of these sequences and it was later
generalized to some perturbations of symmetric Boolean functions (see [6]).

Suppose that 1 ≤ j < n and let F (X) be a binary polynomial in the variables X1, . . . , Xj (the first j
variables in X1, . . . , Xn). The function e[k1,...,ks](n) ⊕ F (X) is called a perturbation of e[k1,...,ks](n). In [6],
it was proved that the sequence of exponential sums of the perturbation e[k1,...,ks](n) ⊕ F (X), that is, the
sequence

(2.6) {S(e[k1,...,ks](n)⊕ F )}n
also satisfies the recurrence whose characteristic polynomial is (2.5).

Theorem 2.2. Let 1 ≤ k1 < · · · < ks be integers and let r = blog2(ks)c+ 1. Suppose that 1 ≤ j < n and let
F (X) be a binary polynomial in the variables X1, . . . , Xj (the first j variables in X1, . . . , Xn). The sequence

(2.7) {S(e[k1,...,ks(n)⊕ F )}n
satisfies the linear recurrence whose characteristic polynomial is given by

(2.8) (X − 2)Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1).

Moreover, if the function F (X) happens to be balanced, that is, if S(F ) = 0, then sequence (2.7) satisfies the
linear recurrence whose characteristic polynomial is given by

(2.9) Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1).

In [9], Cusick considered sequences of exponential sums of rotation symmetric Boolean functions. He
proved that, as in the case of symmetric Boolean functions, these type of sequences also satisfy linear
recurrence with integer coefficients. This result was later generalized in [4] to exponential sums over Galois
fields. In particular, it was showed [4] that the linear recurrent behavior of {S(Rj1,...,js(n))}n is dominated
by the linear recurrent behavior of {S(Tj1,...,js(n))}n where Tj1,...,js(n) is defined by

Tj1,...,js(n) = X1Xj1 · · ·Xjs ⊕X2Xj1+1 · · ·Xjs+1 ⊕ · · · ⊕Xn+1−jsXj1+n−js · · ·Xjs−1+n−jsXn.

As mentioned in the introduction, the main goal of this article is to put all these results in the more
general framework of Walsh transformations and their generalizations. In the next section, we consider
Walsh transformations of symmetric and rotation symmetric Boolean functions.

3. Walsh transforms of symmetric and rotation symmetric Boolean functions

The (non-normalized) Walsh transform of a Boolean function F : Fn2 → F2 is defined to be the function
WF : Fn2 → Z given by

(3.1) WF (a) =
∑
x∈Fn2

(−1)F (x)⊕a·x,

where a · x is the usual scalar product. In the literature, this transformation is often defined as

WF (a) =
1

2n/2

∑
x∈Fn2

(−1)F (x)⊕a·x.
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However, one is a rescale of the other, thus we use definition (3.1). Observe that WF (0) is the regular
exponential sum S(F ).

The nonlinearity of a Boolean function F ∈ Bn is the distance from F to the set of affine functions in n
variables,

nl(F ) = min
G affine

dist(F,G),

where dist(F,G) is the Hamming distance (number of bits where they differ) between F and G. The spectral
amplitude of a Boolean function F , denoted by Spec(F ), is defined by

Spec(F ) = max
a∈Fn2

|WF (a)| .

It is known that

nl(F ) = 2n−1 − 1

2
Spec(F ).

In some cryptographic applications, highly nonlinear Boolean functions are useful. Boolean functions with the
highest nonlinearity, namely, 2n−1−2n/2−1 (hence n must be even) are known as bent functions (introduced
by Rothaus in mid ’60 and published in [22]). An alternative definition is the following: a function F ∈ Bn
is a bent function if

1

2n/2
|WF (a)| = 1

for all a ∈ Fn2 .
One of the main goals in this article is to find families of polynomials {Fn}n, with Fn ∈ Bn, such that the

behavior of the sequence {WFn(a)} as n increases can be analyzed. A necessary condition to be able to do
this is that the tuple a must be of dimension n. However we really want a to be “constant”. This apparent
contradiction can be circumvented by selecting an initial tuple a of dimension, say j, fixing it, and continue
right padding zeros to the end of a until its dimension is n. For example, suppose that the initially selected
tuple is a = (1, 0, 1). When n = 4 we consider the tuple to be a = (1, 0, 1, 0), when n = 5 we consider a to
be a = (1, 0, 1, 0, 0), and so on. Note that this implies, for example, that if a = (1, 0, 1), then

WFn(a) =
∑
x∈Fn2

(−1)Fn(x)⊕Ga(x) = WFn⊕Ga(0),

where Ga(X) = a ·X = X1 ⊕X3.
The function Fn(X) ⊕ Ga(X) can be interpreted as a perturbation of the function Fn(X) by the linear

function Ga(X). This is important, especially if the function Fn(X) is symmetric, as it will imply that the
sequence {WFn(a)}n satisfies linear recurrences with integer coefficients. Thus, from now on, the families
of Boolean polynomials {Fn(X)}n that we choose to study are symmetric and rotation symmetric Boolean
functions. Of course, one of the motivations behind this choice is our desire to extend previous results to
this general setting, but also because these families are good candidate for efficient implementations.

Theorems 2.1 and 2.2 can be re-written in the language of Walsh transforms. We include them here in
order to ease the reading of the article.

Proposition 3.1. Let 1 ≤ k1 < · · · < ks be integers and let r = blog2(ks)c+1. The sequence {We[k1,...,ks](n)(0)}n
satisfies the linear recurrence whose characteristic polynomial is given by

(3.2) (X − 2)Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1),

where Φm(X) represents the m-th cyclotomic polynomial.

Proposition 3.2. Let 1 ≤ k1 < · · · < ks be integers and let r = blog2(ks)c + 1. Suppose that 1 ≤ j < n
and let F (X) be a binary polynomial in the variables X1, . . . , Xj (the first j variables in X1, . . . , Xn). The
sequence

(3.3) {We[k1,...,ks]
(n)⊕F (0)}n

satisfies the linear recurrence whose characteristic polynomial is given by

(3.4) (X − 2)Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1).

Moreover, if the function F (X) happens to be balanced, that is, if S(F ) = 0, then sequence (3.3) satisfies the
linear recurrence whose characteristic polynomial is given by

(3.5) Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1).
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This information implies the following result. For a tuple x ∈ Fn2 , the expression w(x) represents the
Hamming weight of x, that is, the number of 1’s in x.

Theorem 3.3. Let 0 ≤ k1 < k2 < · · · < ks be integers and r = blog2(ks)c + 1. Let j be an integer and

a ∈ Fj2 fixed. The sequence

{We[k1,k2,...,ks]
(n)(a)}n

satisfies the homogeneous linear recurrence whose characteristic polynomial is

(X − 2)Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1).

Moreover, if a 6= 0, then the sequence satisfies the lower order homogeneous linear recurrence whose charac-
teristic polynomial is

Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1).

Finally, we have the closed formula

We[k1,k2,...,ks]
(n+w(a))(a) = d0(a)2n +

2r−1∑
`=1

d`(a)λn` ,

where

d`(a) =
1

2r

2r−1∑
q=0

w(a)∑
m=0

(−1)m
(
w(a)

m

)
(−1)(

q+m
k1

)+···+(q+mks )

 ξq`

λ` = 1 + ξ−1
` and ξ` = e

πi`

2r−1 .

Proof. The first claim is a direct consequence of the above discussion and Proposition 3.2. The second claim
follows from the fact that if a 6= 0, then Wa·X(0) = 0. Thus, We[k1,k2,...,ks]

(n)(a) can be identify with the

exponential sum of the perturbation e[k1,k2,...,ks](n)⊕a ·X with a ·X balanced.
The final claim follows from a series of identities. The first one is the formula of Cai, Green and Thierauf [2]

for exponential sums of elementary symmetric Boolean functions, specifically,

(3.6) S(e[k1,...,ks](n)) = c0(k1, . . . , ks)2
n +

2r−1∑
`=1

c`(k1, . . . , ks)λ
n
` ,

where

c`(k1, . . . , ks) =
1

2r

2r−1∑
q=0

(−1)(
q
k1

)+···+( qks)ξq` .

The second identity states that if F (X) is a Boolean polynomial in the variables X1, . . . , Xj , then (see [6])

(3.7) S(e[k1,...,ks](n)⊕ F ) =

j∑
m=0

Cm(F )S

(
m∑
t=0

(
m

t

)
e[k1−t,...,ks−t](n− j)

)
,

where Cm(F ) is defined as

Cm(F ) =
∑

x∈Fj2 :w(x)=m

(−1)F (x).

The identification of We[k1,k2,...,ks]
(n)(a) with S(e[k1,k2,...,ks](n)⊕a ·x), which in turns can be identified with

the following exponential sum

S(e[k1,k2,...,ks](n)⊕X1 ⊕X2 ⊕ · · · ⊕Xw(a)),

together with (3.6) and (3.7) tell us that

We[k1,k2,...,ks]
(n)(a) = d0(a)2n +

2r−1∑
l=1

d`(a)λn` ,

where

d`(a) =

w(a)∑
m=0

Cm(X1 ⊕X2 ⊕ · · · ⊕Xw(a))

(
1

2r

2r−1∑
q=0

(−1)
∑m
t=0 (mt )

(
( q
k1−t)+···+( q

ks−t)
))

.
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The identities

Cm(X1 ⊕X2 ⊕ · · · ⊕Xw(a)) = (−1)m
(
w(a)

m

)
and

m∑
t=0

(
m

t

)(
q

k − t

)
=

(
q +m

k

)
complete the proof. �

Example 3.4. Consider the symmetric Boolean function Fn(X) = e[2,5](n) and let a = (0, 1, 1). Theo-
rem 3.3 implies that {We[2,5](n)(a)}n satisfies the linear recurrence whose characteristic polynomial is given
by

(3.8)
(
X2 − 2X + 2

) (
X4 − 4X3 + 6X2 − 4X + 2

)
.

Using this recurrence, it is not hard to show that the first few values of {We[2,5](n)(a)}n≥6 are

4, 0, 0, 12, 40, 72, 64,−72,−464,−1248,−2496,−4080,−5408,−4896, 1024, . . . .

Moreover, recurrence (3.8) and some elementary linear algebra produces the closed formula,

We[2,5](n)(a) =

(
2− 3√

2

)(
2 +
√

2
)n/2

cos
(πn

8

)
− 2n/2 cos

(πn
4

)
+(

2 +
3√
2

)(
2−
√

2
)n/2

cos

(
3πn

8

)
.

Walsh transforms of symmetric Boolean functions are not the only ones that are linear recurrent with
integer coefficients. Recently, Cusick [9] showed that exponential sums of rotation symmetric Boolean func-
tions satisfy linear recurrences with integer coefficients. This result was extended to exponential sums over
Galois fields in [4]. It can also be extended to Walsh transforms of rotation symmetric Boolean polyno-
mials. For instance, Lemma 2.2 in [4] can be extended without too much effort to show that if F (X) is a
Boolean polynomial in j variables (j fixed), then {S(Rj1,...,js(n) ⊕ F (X))}n satisfies the same linear recur-
rence that {S(Rj1,...,js(n))}n satisfies. In particular, this implies that for n sufficiently large, the sequence
{WRj1,...,js (n)(a)}n satisfies the same linear recurrence as {WRj1,...,js (n)(0)}n.

Example 3.5. It was showed in [4] that {WR2,...,k(n)(0)}n satisfies the linear recurrence with constant
coefficients whose characteristic polynomial is given by

(3.9) pk(X) = Xk − 2(Xk−2 +Xk−3 + · · ·+X + 1).

Let a ∈ Fj2 be such that its last entry is 1 (if that is not the case, say its last 1 is at position ` < j, then view a
as a tuple in a vector space F`2). Then the sequence {WR2,...,k(n)(a)}n≥max(k,j) satisfies the linear recurrence
whose characteristic polynomial is given by (3.9). For instance, if a = (1, 1, 0, 0, 1), then {WR2,3(n)(a)}n≥5

satisfies the linear recurrence whose characteristic polynomial is X3 − 2X − 2. Using this recurrence, it is
not hard to see that the first few values of {WR2,3(n)(a)}n≥5 are given by

4,−4, 16, 0, 24, 32, 48, 112, 160, 320, 544, 960, 1728, 3008, 5376, 9472, 16768, 29696, . . . .

The closed formula for WR2,3(n)(a), however, is not as simple as the one from Example 3.4. In this case, the
closed formula is given by

WR2,3(n)(a) = β1α
n
1 + β2α

n
2 + β3α

n
3 ,

where the αj ’s are the roots of X3 − 2X − 2, with

α1 ∈ R, α3 = α2 and Im(α2) > 0,

and the βj are the roots of 19X3 − 57X2 + 225X − 23, with

β1 ∈ R, β3 = β2 and Im(β2) > 0.
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Example 3.6. The sequence {WR2,...,k−1,k(n)⊕R2,...,k−2,k(n)(0)}n satisfies the linear recurrence with constant
coefficients whose characteristic polynomial is given by (see [4])

(3.10) qk(X) = Xk − 2Xk−1 + 2X − 2.

Therefore, if a ∈ Fj2 where j is fixed, then {WR2,...,k−1,k(n)⊕R2,...,k−2,k(n)(a)}n≥N(j,k), where N(j, k) is a
sufficiently large integer depending on j and k, satisfies the linear recurrence whose characteristic polynomial
is given by (3.10). For example, suppose that a = (1, 0, 1, 1). Then, the sequence {WR2,3,4(n)⊕R2,4(n)(a)}
satisfies the linear recurrence whose characteristic polynomial is

X4 − 2X3 + 2X − 2.

Using this recurrence we can compute the value of WR2,3,4(n)⊕R2,4(n)(a) for big values of n. For instance,

WR2,3,4(200)⊕R2,4(200)(a) = −29033604282578723548878452629909624952134303744,

and WR2,3,4(100000)⊕R2,4(100000)(a) is a negative integer with 23469 digits with the 2-valuation 25002 (that is,

225002 does and 225003 does not divide it). A closed formula similar to the ones presented in Examples 3.4
and 3.5 is very complicated and impractical, thus we do not include such formula.

The fact that rotation symmetric Boolean functions are linear recurrent can be used to provide asymptotic
analysis of their behavior. For example, we have the following result.

Theorem 3.7. Let k ≥ 5. Then, for all sufficiently large n, the rotation symmetric Boolean function
R2,3,...,k(n)⊕R2,3,...,k−1(n) is not bent.

Proof. Let Fn(X) = R2,3,...,k(n)⊕R2,3,...,k−1(n). Recall that a Boolean function F ∈ Bn is bent if

|WF (b)| = 2n/2,

for all b ∈ Fn2 . We use the fact that, for a fixed tuple a ∈ Fj2, the sequence {WFn(a)} is linear recurrent with
characteristic polynomial (see [4])

qk(X) = Xk − 2Xk−1 + 2.

to prove the result.
For any polynomial f(X) = amX

m + am−1X
m−1 + · · ·+ a1X + a0, define

M(f) = |am|
m∏
j=1

max{1, |βj |},

where β1, β2, . . . , βm are the roots of f(X). Landau’s inequality states that

M(f) ≤
√
|a0|2 + |a1|2 + · · ·+ |an|2.

Let αt, for 1 ≤ t ≤ k, be the roots of qk(X). Observe that Landau’s inequality implies

(3.11) M(qk) ≤
√

22 + 22 + 1 =
√

9 = 3.

Choose α to be the root of qk(X) with the biggest modulus, that is, |αt| ≤ |α| for all 1 ≤ t ≤ k. Without
loss of generality, assume α = αk. Observe that qk(2) = 2 and

qk

(
7

4

)
= 2− 1

7

(
7

4

)k
< 0.

Therefore, by the intermediate value theorem, there is a real root of qk(X) between 7/4 and 2. This implies

|α| > 7

4
>
√

2.

Moreover, α is the real root between 7/4 and 2 and no other root has the same modulus as α. To see this,
suppose, on the contrary, that there is another root, say αt0 with t0 < k, such that |αt0 | = |α|. Then,

M(qk) =

k∏
t=1

max{1, |αt|} >
(

7

4

)2

> 3,

which is a contradiction to (3.11). Therefore, |αt| < |α| for every t = 1, 2, . . . , k − 1 and α is the real root
that lies between 7/4 and 2.
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Now, by the theory of linear recurrences, we know that

WFn(a) =

k∑
t=0

ct(a)αnt ,

for some constants ct(a). Eisenstein criterion, with the choice of the prime 2, implies that qk(X) is irreducible
over Q[X]. Since WFn(a) is always an integer, then the irreducibility of qk(X) over Q[X] implies that
ct(a) 6= 0 for every 1 ≤ t ≤ k. But then,

lim
n→∞

∣∣∣∣WFn(a)

αn

∣∣∣∣ = |ck(a)| 6= 0.

Therefore, asymptotically,
|WFn(a)| ∼ |ck(a)|αn.

But |ck(a)|αn > (
√

2)n = 2n/2 for all sufficiently large n. Therefore, for this fixed tuple a, one has

|WFn(a)| > 2n/2,

for all sufficiently large n. We conclude that Fn(X) = R2,3,...,k(n)⊕R2,3,...,k−1(n) is not bent for all sufficiently
large n. �

Observe that the above discussion implies that S(R2,3,...,k(n)⊕R2,3,...,k−1(n)) = WR2,3,...,k(n)⊕R2,3,...,k−1(n)(0)
satisfies

lim
n→∞

1

2n
S(R2,3,...,k(n)⊕R2,3,...,k−1(n)) = 0.

In [5], functions with this property were good candidates for the search of balanced Boolean functions.
However, we have the following result.

Corollary 3.8. Let k > 2. The polynomial R2,3,...,k(n) ⊕ R2,3,...,k−1(n) is not balanced for all sufficiently
large n.

Proof. Choose a = 0 in the proof of Theorem 3.7. �

We point out that Theorem 3.7 can be extended to other families. For example, it applies to the sequence

(3.12) {WR2,3,...,k(n)(a)}n
with characteristic polynomial

(3.13) Xk − 2(Xk−2 +Xk−3 + · · ·+X + 1)

and to the sequences

(3.14) {WR2,3,...,k−2,k(n)(a)}n and {WR2,3,...,k−2,k+1(n)(a)}n
both with characteristic polynomial

(3.15) Xk+1 − 2Xk−1 − 2Xk−2 − · · · − 2X3 − 4.

In fact the proof follows almost verbatim. The the only differences are that Eisenstein-Dumas criterion must
be used in place of Eisenstein criterion and that to show that there is a unique real root with maximum
modulus, that is, all other roots have modulus less than the modulus of this real root, might not be an easy
task.

Examples (3.12) and (3.14) provide asymptotic evidence to the following conjecture of Stănică and
Maitra [27]:

There are no homogeneous rotation symmetric bent functions of degree bigger than 2.

However, we point out that Stănică showed that R2,3,...,k(n) is never bent [24] and that the results of [18]
imply that these families of rotation polynomials are asymptotically not bent. Thus, we do not pursue a
proof for these examples. However, it looks like the key in all these examples is that their Walsh transforms
satisfy linear recurrences with integer coefficients for which the characteristic polynomial always has a root
with modulus bigger than

√
2. It would be interesting if the ideas of this paper would be used to settle this

conjecture.
For completeness purposes, we present the following proposition. It bounds the roots of the characteristic

polynomials of linear recurrences associated to Walsh transforms of Boolean polynomials. This is an upper
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bound, thus it does not help in the search of roots with modulus bigger than
√

2, but it does help as to the
value of the limit

lim
n→∞

1

2n
S(Fn).

Proposition 3.9. Let Fn ∈ Bn be a family of Boolean functions. Suppose that for some fixed tuple a, the
sequence {WFn(a)}n satisfies a linear recurrence with integer coefficients. Suppose P (X) is the characteristic
polynomial of the minimal of such recurrence. Then, the roots βj of P (X) satisfy |βj | ≤ 2. Moreover, if
P (X) is irreducible in Q[X], then equality is attained only if P (2X) is a palindromic polynomial of even
degree.

Proof. Let β be the root of P (X) with the highest modulus. If |β| > 2, then eventually |WFn(a)| surpasses
2n because

WFn(a) =
∑

βj :P (βj)=0

cj(a)βnj .

for some suitable constants cj(a). Clearly, this is impossible since by definition |Wf (a)| ≤ 2n for every
f ∈ Bn. This shows the first claim.

For the second claim, suppose that P (X) is irreducible in Q[X] and β is a root with |β| = 2. Then
β = 2e2πiθ, for 0 ≤ θ ≤ 1. That is,

P (2e2πiθ) = 0.

In other words, e2πiθ is a root of P (2X). Therefore, P (2X) is irreducible and has a root in the unit circle.
But if an irreducible polynomial in Q[X] has a root in the unit circle, then the polynomial is palindromic of
even degree [8, Th. 1.1]. This concludes the proof. �

Remark 3.10. Observe that Proposition 3.9 is true in general, regardless if the family {Fn}n is or is not
symmetric or rotation symmetric.

Example 3.11. Let P1(X) and P2(X) be the polynomials (3.13) and (3.15) (resp.). Both polynomials are
irreducible in Q[X], but P1(2X) and P2(2X) are not palindromic. Therefore, the roots of both polynomials
lie in |z| < 2.

The approach presented in [4] can also be used to see that Walsh transforms of linear combinations of
rotation symmetric Boolean polynomials and symmetric Boolean polynomials satisfy linear recurrences with
integer coefficients. We will not repeat the argument in this article, however, for completeness purposes, we
provide the definition (taken from [4]) of a recursive generating set for a sequence, which was the main tool
used in the article [4].

Definition 3.12. Let {b(n)} be a sequence on an integral domain D. A set of sequences

{{a1(n)}, {a2(n)}, . . . , {as(n)}},
where s is some natural number, is called a recursive generating set for {b(n)} if

(1) there is an integer ` such that for every n, b(n) can be written as a linear combination of the form

b(n) =

s∑
j=1

cj · aj(n− `),

where cj ’s are constants that belong to D, and
(2) for each 1 ≤ j0 ≤ s and every n, aj0(n) can be written as a linear combination of the form

aj0(n) =

s∑
j=1

dj · aj(n− 1),

where dj ’s are also constants that belong to D.

The sequences {aj(n)}’s are called recursive generating sequences for {b(n)}.

It is clear that if we find a generating set for a sequence {b(n)}, then such sequence is linear recurrent.
This is because equations from (2) in Definition 3.12 can be written in matrix form and any annihilating
polynomial for the corresponding matrix is the characteristic polynomial of a linear recurrence satisfied by
the {aj(n)}’s.
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Let us provide an example to show how this method works. We state such example for exponential sums,
but it can be extended to Walsh transforms without too much efforts.

Example 3.13. Observe that

S(R2,3(n)⊕ e2(n)) =S(T2,3(n− 2)⊕ e2(n− 2))+

S(T2,3(n− 2)⊕Xn−3Xn−2 ⊕ e2(n− 2)⊕ e1(n− 2))+

S(T2,3(n− 2)⊕ e2(n− 2)⊕ e1(n− 2)⊕X1X2)−
S(T2,3(n− 2)⊕ e2(n− 2)⊕X1 ⊕X1X2 ⊕Xn−2 ⊕Xn−3Xn−2).

(3.16)

Also, if

aβ1,β2,β3,β4,β5
(n) = S(T2,3(n)⊕ β1X1 ⊕ β2X1X2 ⊕ β3Xn ⊕ β4Xn−1Xn ⊕ e2(n)⊕ β5e1(n)),

then

(3.17) aβ1,β2,β3,β4,β5
(n) = aβ1,β2,0,0,β5

(n− 1) + (−1)β3⊕β5aβ1,β2,β4,β1,β5⊕1(n− 1).

Equations (3.16) and (3.17) imply that the sequences {aβ1,β2,β3,β4,β5(n)} form a recursive generating set for
{S(R2,3(n)⊕ e2(n))}n. Moreover, the minimal polynomial of the 32× 32 matrix associated to (3.17) is

X7 − 2X6 + 2X5 + 4X.

This implies that {S(R2,3(n)⊕ e2(n))} satisfies the linear recurrence with characteristic polynomial

X6 − 2X5 + 2X4 + 4.

This recurrence can be used to show that the first few values of {S(R2,3(n)⊕ e2(n))}n≥3 are given by

2, 4, 0,−20,−40,−48,−24, 32, 112, 240, 416, 544, 352,−512,−2176,−4288,−5888,−5376, . . . .

This example leads to the following result.

Theorem 3.14. Suppose that k1, k2 are natural numbers with k1 > 1. The sequence

{S(R2,3,...,k1(n)⊕ ek2(n))}n
satisfies a linear recurrence with integer coefficients of order less than or equal to 22(k1−1)+k2−1.

Proof. Define

a(β1,β2,...,β2k1+k2−3)(n; k1, k2) = S(T2,3,...,k1(n)⊕ β1X1 ⊕ β2X1X2 ⊕ · · · ⊕ βk1−1X1X2 · · ·Xk1−1⊕
βk1Xn ⊕ βk1+1XnXn−1 ⊕ · · · ⊕ β2(k1−1)XnXn−1 · · ·Xn−k1+1⊕(3.18)

ek2(n)⊕ β2k1−1ek2−1(n)⊕ · · ·⊕β2k1+k2−3e1(n)).

The sequences {a(β1,β2,...,β2k1+k2−3)(n; k1, k2)} form a recursive generating set for the sequence

{S(R2,3...,k1(n)⊕ ek2(n))},

thus, {S(R2,3...,k1(n)⊕ ek2(n))} is linear recurrent. Now, we observe that the corresponding matrix for the

recursive generating set is of dimension 22(k1−1)+k2−1 × 22(k1−1)+k2−1. Therefore, its minimal polynomial is
of degree less than or equal to 22(k1−1)+k2−1. This concludes the proof. �

Theorem 3.14 can be extended to Walsh transforms of linear combinations of terms of the form Rj1,...,jr (n)
and/or the form eks(n). However, we omit the proof of this claim – the approach is the same as the one in
the proof of Theorem 3.14.

We conclude this section by studying the nonlinearity of symmetric and rotation symmetric Boolean
functions. After all, the nonlinearity of a Boolean function is related to the Walsh transform of said function
and we know that Walsh transforms of symmetric and rotation symmetric Boolean functions are linear
recurrent. It appears that the same is true for the nonlinearity of symmetric and some rotation Boolean
functions, that is, the nonlinearity of a symmetric and some rotation Boolean function appears to be linear
recurrent with integer coefficients. In particular, we have the following conjectures.

Conjecture 3.15. Let k > 1 be a fixed integer. The nonlinearity of ek(n), as n increases, satisfies a linear
recurrence with integer coefficients.
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As further evidence for the above conjecture, from [3, Table 1], we can infer that the nonlinearity of e2(n)
satisfies the linear recurrence whose characteristic polynomial is given by

X2 − 2.

From [3, Prop. 19], since the nonlinearity of e3(n) is

nl(e3(n)) =


2n−2 if n ≡ 0 (mod 4)

2n−2 − 2
n−3
2 if n ≡ 1 (mod 4)

2n−2 − 2
n−2
2 if n ≡ 2 (mod 4)

2n−2 − 2
n−3
2 if n ≡ 3 (mod 4)

= 2n−2 + 2
n
2−3

(
2 cos

(nπ
2

)
+
(√

2− 1
)

(−1)n −
√

2− 1
)
,

we easily infer that {nl(e3(n))}n satisfies the linear recurrence whose characteristic polynomial is given by

X5 − 2X4 − 4X + 8 = (X − 2)
(
X2 − 2

) (
X2 + 2

)
.

Conjecture 3.16. Let k > 1 be a fixed integer. The sequence of {nl(R2,3,...,k(n))}n≥k satisfies the linear
recurrence whose characteristic polynomial is given by

Xk − 2(Xk−2 +Xk−3 + · · ·+X + 1).

The key for the proof of Conjecture 3.16 may be the apparent identity

Spec(R2,3,...,k(n)) = WR2,3,...,k(n)(0).

In other words, the maximum value of |WR2,3,...,k(n)(a)| appears to be attained at a = (0, 0, . . . , 0).
In the next sections, we generalize (further) the results presented so far. In particular, we show that many

of these results carry over to generalizations of Walsh transforms.

4. nega-Hadamard transform

The Walsh transform can be generalized in various ways. In this article, we work with three of such
generalizations. The first generalization is known as the nega-Hadamard transform. For any Boolean function
F (X), the nega-Hadamard transform of F is defined as the complex valued function given by

(4.1) NF (a) =
∑
x∈Fn2

(−1)F (x)⊕a·x iw(x),

where i =
√
−1 and w(x) is the Hamming weight of the vector x. According to Riera and Parker [21], the

nega-Hadamard transform is central to the structural analysis of pure n-qubit stabilizer quantum states.
The nega-Hadamard transform is invertible, in particular, for F ∈ Bn, one has

(−1)F (y) = 2−ni−w(y)
∑
x∈Fn2

NF (x)(−1)y.x.

See [19, 21] and [25, Lemma 1].
Many properties and concepts known for Walsh transforms can be generalized to nega-Hadamard trans-

forms. One of such examples is the concept of bent functions. In this case, a Boolean function F ∈ Bn is
said to be negabent if

1

2n/2
|NF (a)| = 1.

The reader interested in this concept is invited to read [21, 25, 26]. In this article, we show that the linear
recursive nature of the Walsh transform of symmetric and rotation symmetric Boolean functions carry over
to the nega-Hadamard transform. In particular, we have the following results.

Theorem 4.1. Let 0 ≤ k1 < k2 < · · · < ks be integers and r = blog2(ks)c + 1. Suppose that j is a

natural number and a ∈ Fj2 is fixed. The sequence {Ne[k1,k2,...,ks]
(n)(a)} satisfies the linear recurrence whose

characteristic polynomial is given by

(X − 2)Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1).
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Moreover, if a 6= 0, then it satisfies the lower order recurrence whose characteristic polynomial is given by

Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1).

Finally, a closed formula is given by

Ne[k1,k2,...,ks]
(n)(a) = dneg0 (a)2n +

2r−1∑
`=1

dneg` (a)λn` ,

where

dneg` (a) =
1

2r+1

2r−1∑
q=0

w(a)∑
m=0

(−1)m
(
w(a)

m

)
(−1)(

q+m
2 )+(q+mk1 )+···+(q+mks ) ((1 + i) + (−1)q+m(1− i)

) ξq` ,

and, as before, ξ` = e
πi`

2r−1 and λ` = 1 + ξ−1.

Proof. The idea of the proof is to show that the nega-Hadamard transform can be expressed as a linear
combinations of Walsh transforms using some known “tricks” in the theory of Boolean functions. Observe
that once this is done, some results from the previous section carry over to the nega-Hadamard transform.

One of the tricks to use is the following congruence of Hamming weights

(4.2) w(x) ≡
k−1∑
j=0

e2j (x)2j mod 2k,

where the elementary polynomials e2j (X) are Boolean, that is, their output is either 0 or 1 [23, Lemma 5].
Observe that this congruence yields

NF (a) =
∑
x∈Fn2

(−1)F (x)⊕a·x ie1(x)+2e2(x)(4.3)

=
∑
x∈Fn2

(−1)F (x)⊕e2(x)⊕a·x ie1(x).

Now we use a second trick [23, Lemma 4]. In this case, we use the fact that if b a Boolean variable, then

(4.4) zb =
1 + (−1)b

2
+

1− (−1)b

2
z.

This identity leads to

NF (a) =
∑
x∈Fn2

(−1)F (x)⊕e2(x)⊕a·x
(

1 + (−1)e1(x)

2
+

1− (−1)e1(x)

2
i

)
(4.5)

=
1 + i

2

∑
x∈Fn2

(−1)F (x)⊕e2(x)⊕a·x +
1− i

2

∑
x∈Fn2

(−1)F (x)⊕e2(x)⊕e1(x)⊕a·x

=
1 + i

2
WF⊕e2

(a) +
1− i

2
WF⊕e2⊕e1

(a).

Thus, the nega-Hadamard transform can be expressed as a linear combination of two Walsh transforms.
Moreover, both of these Walsh transforms involve the original function plus some symmetric Boolean poly-
nomials. Therefore, the results presented in the previous section applies to the nega-Hadamard transform.
This takes care of the first two claims. The last claim follows by combining equation (4.5) and the closed
formula from Theorem 3.3. This concludes the proof. �

We get for free the following corollary.

Corollary 4.2. Let Fn(X) be a Boolean function that is a linear combinations of terms of the form

Rj1,...,jr (n) and/or the form eks(n). Let j be a fixed integer and a ∈ Fj2. The sequence {NFn(a)}n sat-
isfies a linear recurrence with integer coefficients.
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Example 4.3. Consider the Boolean function e[7,4](n) and the tuple a = (1, 0, 1). Theorem 4.1 implies that
{Ne[7,4](n)(a)}n satisfies the linear recurrence whose characteristic polynomial is

Φ4(X − 1)Φ8(X − 1) =
(
X2 − 2X + 2

) (
X4 − 4X3 + 6X2 − 4X + 2

)
.

After simplification, the closed formula for Ne[7,4](n+w(a))(a) is given by

Ne[7,4](n+w(a))(a) =
√

2
(

2 +
√

2
)n

2−1

sin
(πn

8

)
+
√

2
(

2−
√

2
)n

2−1

sin

(
3πn

8

)
− i
(

2 +
√

2
)n

2−1

cos
(πn

8

)
− i
(

2−
√

2
)n

2−1

cos

(
3πn

8

)
− i 2n/2 cos

(πn
4

)
.

Example 4.4. Consider the Boolean function Fn(X) = R2,3,4(n) and a = (1, 1, 0). The sequences
{WFn⊕e2

(a)}n and {WFn⊕e2⊕e1
(a)}n both have the same recursive generating set (see Theorem 3.14).

The associated matrix for the recursive generating set is a 128× 128 matrix and its minimal polynomial is

X10 − 2X9 + 2X8 + 4X5 − 4X4 + 4X2.

This implies that {NFn(a)}n≥5 satisfies the homogeneous linear recurrence with characteristic polynomial

X8 − 2X7 + 2X6 + 4X3 − 4X2 + 4.

Using this recurrence we can obtain the first few values of {NFn(a)}n≥5, which are

2 + 2i,−4 + 8i,−8 + 12i,−16,−28− 20i,−16− 40i, 40− 64i, 112− 64i, 168 + 40i, 176 + 256i, 464i, . . . .

The polynomial q(X) = X8 − 2X7 + 2X6 + 4X3 − 4X2 + 4 is irreducible in Z[X]. This means that this
recurrence is the minimal homogeneous linear recurrence with integer coefficients satisfied by {NFn(a)}n≥5.
However, the values of {NFn(a)}n≥5 lie in Z[i], thus it is more natural to consider recurrences over Z[i].
But if the coefficients of the linear recurrence are allowed to be Gaussian integers, then the recurrence we
just found might not be minimal. However, the characteristic polynomial of the minimal recurrence must
be a factor of q(X) in Z[i][X]. Indeed, the minimal homogeneous linear recurrence with Gaussian integer
coefficients satisfied by {NFn(a)}n≥5 has characteristic polynomial X4−(1−i)X3−2iX2 +2X+2i. Observe
that q(X) =

(
X4 − (1 + i)X3 + 2iX2 + 2X − 2i

) (
X4 − (1− i)X3 − 2iX2 + 2X + 2i

)
.

In the next section, we show that these results can be extended further to some generalizations of Walsh
transform.

5. Other generalizations

One of the reasons that Boolean functions are important in Information Theory is the fact that every
information encoded in a computer can be reduced to a sequence of 0’s and 1’s (bits). However, as we all
well know, the output of a Boolean function is either 0 or 1. Thus, we could say that Boolean functions
“take care” of one bit at the time. In this section, we consider generalized Boolean functions F : Fn2 → Z2` ,
that is, functions from the vector space Fn2 to the ring of integers modulo 2`. These functions consider ` bits
at the same time.

The concept of Walsh transform can be generalized for this type of functions. Let ζ2` be a primitive 2`-th
root of unity. We define the generalized Walsh transform of F as

WF ;`(a) =
∑
x∈Fn2

ζ
F (x)

2`
(−1)a·x.

Observe that WF ;1(a) = WF (a), thus WF ;` is indeed a generalization of the Walsh transform. Moreover,
WF ;` is invertible.

Any element of Z2` can be identified with an expression of the form

b0 + b1 · 2 + b2 · 22 + · · ·+ b`−1 · 2`−1,

where bj ∈ F2. This means that any function F : Fn2 → Z2` can be expressed in the form

F (X) = b0(X) + b1(X) · 2 + b2(X) · 22 + · · ·+ b`−1(X) · 2`−1,
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where bj(X) ∈ Bn. Thus, using this identification, the generalized Walsh transform can be expressed as

WF ;`(a) =
∑
x∈Fn2

(−1)a·x
`−1∏
j=0

ζ
2jbj(x)

2`
=
∑
x∈Fn2

(−1)a·x
`−1∏
j=0

ζ
bj(x)

2`−j
.(5.1)

This expression for the generalized Walsh transform can be used to express WF ;`(a) as a linear combination
of regular Walsh transforms. We briefly repeat an argument of [29] (with slight changes). Observe that
equation (4.4) implies

WF ;`(a) =
∑
x∈Fn2

(−1)a·x
`−1∏
j=0

ζ
bj(x)

2`−j

=
∑
x∈Fn2

(−1)a·x
`−1∏
j=0

(
1 + (−1)bj(x)

2
+

1− (−1)bj(x)

2
ζ2`−j

)

= c`−1(a)
∑
x∈Fn2

(−1)b`−1(x)⊕a·x +

`−2∑
j=0

c`−1,j(a)
∑
x∈Fn2

(−1)b`−1(x)⊕bj(x)⊕a·x

+
∑

j1<j2<`−1

c`−1,j1,j2(a)
∑
x∈Fn2

(−1)b`−1(x)⊕bj1 (x)⊕bj2 (x)⊕a·x

+ · · ·+ c`−1,0,1,...,`−2(a)
∑
x∈Fn2

(−1)b`−1(x)⊕a·x
⊕`−2
j=0 bj(x)

= c`−1(a)Wb`(a) +

`−2∑
j=0

c`−1,j(a)Wb`⊕bj (a) +
∑

j1<j2<`−1

c`−1,j1,j2(a)Wb`⊕bj1⊕bj2 (a)

+ · · ·+ c`−1,0,1,...,`−2(a)Wb`⊕b0⊕b1⊕···⊕b`−2
(a).

(5.2)

Equation (5.2) implies that, as in the case of the nega-Hadamard transform, all the results about linear
recurrences of Walsh transforms carry over to generalized Walsh transforms. In particular, we have the
following results.

Theorem 5.1. Let ` > 0 be an integer. Suppose that F : Fn2 → Z2` is such that

Fn(X) = b0(X) + b1(X) · 2 + b2(X) · 22 + · · ·+ b`−1(X) · 2`−1

where bt(X) ∈ Bn is such that
bt(X) = e

[k
(t)
1 ,k

(t)
2 ,...,k

(t)
st ]

(n),

and 0 ≤ k
(t)
1 < k

(t)
2 < · · · < k

(t)
st are integers. Let K = max{k(t)

st : 0 ≤ t ≤ ` − 1} and r = blog2(K)c + 1.

Suppose that j is a fixed natural number and a ∈ Fj2. Then, the sequence {WFn;`(a)}n satisfies the linear
recurrence whose characteristic polynomial is given by

(X − 2)Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1).

In particular, if a 6= 0, then it satisfies the lower order recurrence whose characteristic polynomial is given
by

Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1).

Theorem 5.2. Let Fn : Fn2 → Z2` be such that its components are linear combinations of terms of the

form Rj1,...,jr (n) and/or the form eks(n). Let j be a fixed integer and a ∈ Fj2. The sequence {WFn;`(a)}n
satisfies a linear recurrence with integer coefficients. Moreover, if q`−1,j1,j2,...,jt(X) is the characteristic
polynomial associated to the minimal homogeneous linear recurrence with integer coefficients satisfied by
{Wb`−1⊕bj1⊕bj2⊕···⊕bjt (a)}n, then {WFn;`(a)}n satisfies the homogeneous linear recurrence whose character-
istic polynomial is

lcm(q`−1,j1,j2,...,jt(X)).

Equation (5.2) tells us more. Observe that if F (X) = b0(X) + b1(X) · 2 + b2(X) · 22 + · · ·+ b`−1(X) · 2`−1,
then the `−1 component, that is, b`−1(X), dominates the behavior of {WF ;`(a)}n in the sense that it appears
in every Walsh transform on the right hand side of (5.2). In particular, we have the following corollary.
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Corollary 5.3. Let Fn : Fn2 → Z2` be such that F (X) = b0(X) + b1(X) · 2 + b2(X) · 22 + · · ·+ b`−1(X) · 2`−1

and its components bt(X) are linear combinations of terms of the form Rj1,...,jr (n) and/or the form eks(n).

Let j be a fixed integer and a ∈ Fj2. Let q(X) and q`−1(X) be the characteristic polynomial associated to the
minimal homogeneous linear recurrences satisfied by {WF ;`(a)}n and {Wb`−1

(a)}n, respectively. Then,

q`−1(X) | q(X).

Example 5.4. Consider the function Fn : Fn2 → Z4 given by Fn(X) = e2(n) +R2,3(n) · 2. Let a = (0, 1, 1).
In this case,

WFn;2(a) =
1 + i

2
WR2,3(n)(a) +

1− i
2

WR2,3(n)⊕e2(n)(a)

The characteristic polynomial associated to the minimal linear recurrence satisfied by {WR2,3(n)(a)}n is given
by

X3 − 2X − 2,

while the characteristic polynomial associated to {WR2,3(n)⊕e2(n)(a)}n is

(5.3) X6 − 2X5 + 2X4 + 4.

Theorem 5.2 implies that {WFn;2(a)}n satisfies the linear recurrence with characteristic polynomial given by

lcm(X3 − 2X − 2, X6 − 2X5 + 2X4 + 4) = (X3 − 2X − 2)(X6 − 2X5 + 2X4 + 4).

On the other hand, consider the function Gn : Fn2 → Z4 given by Gn(X) = R2,3(n) + e2(n) · 2. The
function Gn(X) is very similar to Fn(X), with the only difference being that the roles of the first and second
components are interchanged. Again, let a = (0, 1, 1). Observe that the characteristic polynomial associated
to the minimal linear recurrence satisfied by {We2(n)(a)} is given by

X2 − 2X + 2,

while the one for {We2(n)⊕R2,3(n)(a)}n is (5.3). This implies that {WGn;2(a)} satisfies the linear recurrence
with characteristic polynomial given by

lcm(X2 − 2X + 2, X6 − 2X5 + 2X4 + 4) = (X2 − 2X + 2)(X6 − 2X5 + 2X4 + 4).

Example 5.5. Consider now the Boolean function Fn : Fn2 → Z4 given by Fn(X) = e3(n) + e5(n) · 2. Let
a = (0, 1, 1) Observe that K = max{3, 5} = 5, thus Theorem 5.1 tell us that {WFn;2(a)}n satisfies the linear
recurrence whose characteristic polynomial is

Φ4(X − 1)Φ8(X − 1) = X6 − 6X5 + 16X4 − 24X3 + 22X2 − 12X + 4.

Of course, this might not be the minimal homogeneous linear recurrence with integer coefficients satisfied by
{WFn;2(a)}n, however, Corollary 5.3 tell us that the minimal of such recurrence has characteristic polynomial
divisible by the characteristic polynomial associated to the sequence {We5(n);2(a)}n, which is Φ8(X − 1).
Indeed, the polynomial

Φ8(X − 1) = X4 − 4X3 + 6X2 − 4X + 2

is the characteristic polynomial associated to the minimal linear recurrence with integer coefficients satisfied
by {WFn;2(a)}n. Moreover, if Gaussian integers are allowed as coefficients of the linear recurrence, then the
minimal recurrence has characteristic polynomial

X2 − 2X + (1− i),

which is a factor of Φ8(X − 1) in Z[i].
Consider now the function Gn : Fn2 → Z4 given by Gn(X) = e5(n) + e3(n) · 2. As in the previous

example, the function Gn(X) is very similar to Fn(X), with the only difference being that the roles of the
first and second components are interchanged. Again, Theorem 5.1 tell us that {WGn;2(a)}n satisfies the
linear recurrence whose characteristic polynomial is

Φ4(X − 1)Φ8(X − 1) = X6 − 6X5 + 16X4 − 24X3 + 22X2 − 12X + 4.

This recurrence turns out to be minimal over both Z and Z[i].
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Finally, we point out that nega-Hadamard transform can also be generalized. As in the case of the
generalized Walsh transform, consider a function F : Fn2 → Z2` . Also, as before, let ζ2` be a primitive 2`-th
root of unity. We define the generalized nega-Hadamard transform of F as

NF ;`(a) =
∑
x∈Fn2

(−1)F (x)+a·xζ
w(x)

2`
.

Observe that NF ;2(a) = NF (a). Congruence (4.2) and equation (4.4) can be used to express the generalized
nega-Hadamard transform as a linear combination of Walsh transforms. Therefore, all the results discussed
through out the article carry over to this transform.

6. Concluding remarks

In this work we developed techniques that generalized previous work on the subject. In particular, we
presented a method for finding recurrence relations for Walsh transformations of symmetric and rotation
symmetric Boolean functions. We also extended this result to some generalizations of Walsh transformations
(the nega-Hadamard transform being one of them). In the particular case of symmetric Boolean functions,
we provided a closed formula for the Walsh and nega-Hadamard transformations of these functions. We also
showed how the results discussed in this paper could be used to obtain information about the asymptotic
behavior of these transformations. It would be interesting if the expert readers in the field find useful
applications to our results.
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