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Abstract. Rotation symmetric Boolean functions were introduced by Pieprzyk and Qu in late 1990’s.
These functions are useful, among other things, in the design of fast hashing algorithms with strong cryp-

tographic properties. A monomial rotation Boolean function is called long cycle if the number of terms in
its algebraic normal form coincides with the number of variables and short cycle if the number of terms is

less than the number of variables. In this article, we characterize a family of generators of short cycles. We

then use such family to count the number of short cycles.

1. Introduction

Boolean functions are fascinating combinatorial objects with applications to scientific fields like coding
theory, cryptography and information theory. An n-variable Boolean function is a map from Fn

2 → F2 where
F2 represents the field of two elements. The set of all n-variable Boolean functions is usually denoted by Bn.

It is well-established that every Boolean function f ∈ Bn can be identified with a multi-variable polynomial

(1.1) f(X1, . . . , Xn) =
⊕

a=(a1,...,an)∈Fn
2

λa

n∏
j=1

X
aj

j ,

where λa ∈ F2 for every a ∈ Fn
2 and ⊕ represents addition mod 2. This polynomial is known as the algebraic

normal form (or ANF for short) of the Boolean function f . The algebraic degree of f ∈ Bn is the degree of
its ANF.

The Hamming weight of a vector x ∈ Fn
2 , usually denoted by wt(x), is the number of its entries that

are equal to 1. Let x0 = (0, 0, . . . , 0, 0),x1 = (0, 0, . . . , 0, 1),x2 = (0, 0, . . . , 1, 0), . . . ,x2n−1 = (1, 1, . . . , 1, 1).
The truth table of f ∈ Bn is the vector [f(x0), f(x1), . . . , f(x2n−1)]. The weight (or Hamming weight) of a
Boolean function f ∈ Bn, denoted by wt(f), is the number of 1 in its truth table.

A very important property in some cryptographic applications is balancedness. An n-variable Boolean
function f ∈ Bn is called balanced if the number of zeros and the number of ones in its truth table are the
same. Balancedness of Boolean functions is usually studied via Hamming weights or via exponential sums.

The exponential sum of a Boolean function f ∈ Bn is defined as

(1.2) S(f) =
∑
x∈Fn

2

(−1)f(x).

Observe that a Boolean function is balanced if and only if S(f) = 0. The Hamming weight of a Boolean
function and its exponential sum are linked by the equation

(1.3) wt(f) = 2n−1 − 1

2
S(f).

For more comprehensive information about Boolean functions, please refer to [2, 15].
Balancedness of special families like symmetric and rotation symmetric Boolean functions has been the

subject of several studies [3, 4, 5, 6, 10, 11, 12, 14, 16, 18, 27]. A Boolean function f ∈ Bn is called symmetric
if it is invariant under the action of the symmetric group Sn of n symbols, that is, if

f
(
Xσ(1), . . . , Xσ(n)

)
= f(X1, . . . , Xn)

Date: September 6, 2022.
2020 Mathematics Subject Classification. 05E05, 11T23.

Key words and phrases. rotation monomial Boolean functions, short cycles, recurrences.

1
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for every σ ∈ Sn. On the other hand, a Boolean function f ∈ Bn is called rotation symmetric if it is invariant
under the action of the cyclic group Cn of n elements, that is, if

f
(
Xσ(1), . . . , Xσ(n)

)
= f(X1, . . . , Xn)

for every σ ∈ Cn.
It is well-known that ANF of a symmetric Boolean function f ∈ Bn has the form

(1.4) f = en,k1
⊕ en,k2

⊕ · · · ⊕ en,ks

where 0 ≤ k1 < · · · < ks are integers and en,k represents the n-variable elementary symmetric polynomial
of degree k. For simplicity, we often use the notation en,[k1,...,ks] to represent the right-hand side of (1.4). It
is known that if 0 ≤ k1 < · · · < ks are fixed integers, then the sequence {S(en,[k1,...,ks])}n satisfies a linear
recurrence with constant coefficients [1, 3], in other words, it is a C-finite sequence. To be more specific, the
sequence {S(en,[k1,...,ks])}n satisfies the recurrence whose characteristic polynomial is given by

(1.5) (X − 2)Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1),

where r = ⌊log2(ks)⌋+1 and Φn(X) represents the n-th cyclotomic polynomial. The fact that {S(en,[k1,...,ks])}n
is a C-finite sequence is very important, as it implies that the value of the exponential sum can be calculated
efficiently provided some initial conditions. This result was extended to Walsh-Hadamard transformations
of symmetric Boolean functions in [6] and to every finite field in [8].

Rotation symmetric Boolean functions were introduced by Pieprzyk and Qu [27] (although, they did
appear before in the work of Filiol and Fontaine [17] as idempotents). They showed that these functions are
useful, among other things, in the design of fast hashing algorithms with strong cryptographic properties.
Let 1 < j1 < · · · < js be integers. Rotation symmetric Boolean functions of the form

(1.6) Rj1,...,js(n) = X1Xj1 · · ·Xjs ⊕X2Xj1+1 · · ·Xjs+1 ⊕ · · · ⊕XnXj1−1 · · ·Xjs−1,

where none of the terms overlap or

(1.7) Rj1,...,js(n) = X1Xj1 · · ·Xjs ⊕ · · · ⊕XkXj1+k · · ·Xjs+k

whereXk+1Xj1+k+1 · · ·Xjs+k+1 is the first term overlapping one of the previous terms; are called a monomial
rotation symmetric Boolean function (the indices are taken modulo n and the complete system of residues
mod n is {1, 2, . . . , n}) . We say that Rj1,...,js(n) is long cycle if the period is n and short cycle if the period
is less than n. The rotation

R2,3(4) = X1X2X3 ⊕X2X3X4 ⊕X3X4X1 ⊕X4X1X2

is an example of a long cycle, while

R3(4) = X1X3 ⊕X2X4

is an example of a short cycle. In [10], T. Cusick proved that, as in the case of symmetric Boolean func-
tions, sequences of weights of rotation symmetric Boolean functions are C-finite. Cusick’s result was later
generalized to Walsh-Hadamard transformations [6] and to every finite field [7].

In this article, we study monomial rotation symmetric Boolean functions that are short cycle. We provide
explicit generators for them and use these generators to count the number of short cycles given a fixed
number of variables and a fixed degree.

Since we are working with Boolean functions that are fixed under the action of certain groups (Cn in our
case), then it is a good idea to introduce some notations related to group actions. Suppose that you have
group G acting on a set X. Let g · x denote the action of g ∈ G on x ∈ X. The orbit of x ∈ X under the
action of G will be denoted by O(x). In other words,

O(x) = {g · x : g ∈ G}.

The stabilizer of x ∈ X is denoted by Stab(x), that is,

Stab(x) = {g ∈ G : g · x = x}.

It is not hard to see that the stabilizer of any element of X is in fact a subgroup of G. One of the classic
results of the theory of group actions is called the Orbit-Stabilizer Theorem. It states that

|O(x)| = [G : Stab(x)].
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In other words, the length of the orbit of an element of X is the group index of the stabilizer of such element.
Thus, in the case of a finite group G, the length of the orbit of an element of X divides the order of the
group.

2. Generators for short cycles

In the introduction, we define long cycle and short cycle rotation symmetric Boolean functions. To be
more explicit, let

(2.1) σn =

(
1 2 3 · · · n− 1 n
2 3 4 · · · n 1

)
and let ℓ,m, n ∈ N with ℓ ≤ n and m ≤ n. If

(2.2)

m∑
i=1

Xk1+iXk2+i · · ·Xkℓ+i

is fixed by the rotation σn and m is the smallest number that satisfies this condition, then (2.2) is called

(1) a short cycle of size m if m < n,
(2) a long cycle if m = n.

We will abuse notation and use Rk1,k2,··· ,kℓ
(n) to represent (2.2). The monomial Xk1

Xk2
· · ·Xkℓ

is called a
monomial generator of Rk1,k2,··· ,kℓ

(n). Our goal in this section is to characterize short cycles.
Our first result is the next one. It is not new, but we provide a proof for completeness.

Lemma 2.1. Let ℓ, n ∈ N with ℓ < n. If Rk1,k2,··· ,kℓ
(n) is a short cycle of size m, then m|n.

Proof. Recall that rotation symmetric Boolean functions are those functions in Bn that are fixed under the
action of the cyclic group Cn = ⟨σn⟩. The terms of the rotation generated by the monomial Xk1Xk2 · · ·Xkℓ

are precisely the elements of O(Xk1Xk2 · · ·Xkℓ
). Therefore,

m = |O(Xk1
Xk2

· · ·Xkℓ
)| = [Cn : Stab(Xk1

Xk2
· · ·Xkℓ

)]

by the Orbit-Stabilizar Theorem. Thus m|n, as claimed. □

We can be more precise about m. Let j the least positive integer such that

σj
n ·Xk1

Xk2
· · ·Xkℓ

= Xk1
Xk2

· · ·Xkℓ
.

Then, it is clear that Stab(Xk1Xk2 · · ·Xkℓ
) = ⟨σj

n⟩ and therefore |Stab(Xk1Xk2 · · ·Xkℓ
)| = n/j. That implies

m = |O(Xk1
Xk2

· · ·Xkℓ
)| = [Cn : Stab(Xk1

Xk2
· · ·Xkℓ

)] =
n

n/j
= j.

Therefore, m is just the minimal positive integer such that σm
n generates Stab(Xk1

Xk2
· · ·Xkℓ

).
A natural step now is to find a way to detect a short cycle rotation by analyzing its generators. The next

result is about an explicit generator for a short cycle rotation of length m.

Theorem 2.2. Let ℓ and n be natural numbers with ℓ < n. If Rr1,··· ,rℓ(n) is short cycle of length m, then
n/m divides ℓ (the degree of Rr1,...,rℓ(n)) and there are integers 1 < k2 < · · · < kq ≤ m, with q = mℓ/n,
such that

(2.3)

n
m−1∏
j=0

X1+jmXk2+jm · · ·Xkq+jm

is a generator of Rr1,...,rℓ(n).

Proof. Suppose that Rr1,...,rℓ(n) is a short cyle of length m. Then m |n. Let d = n/m. Since Rr1,...,rℓ(n) is
fixed by the rotation σn, then there is a term that has X1 in it. Suppose that X1Xk2

· · ·Xkℓ
is such term.
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This term is a generator of Rr1,...,rℓ(n) with 1 < k2 < · · · < kℓ ≤ n. Note that the terms of Rr1,...,rℓ(n) are
given by

X1Xk2
· · · Xkℓ−1

Xkℓ
(2.4)

X2Xk2+1 · · · Xkℓ−1+1Xkℓ+1

X3Xk2+2 · · · Xkℓ−1+2Xkℓ+2

...

Xm−1Xk2+m−2 · · · Xkℓ−1+m−2Xkℓ+m−2

XmXk2+m−1 · · · Xkℓ−1+m−1Xkℓ+m−1,

where it is understood that the indices of variables are to be taken mod n with reduced residue system
{1, 2, . . . , n}. These terms can be obtained from X1Xk2

· · ·Xkℓ−1
Xkℓ

by applying σj
n, j = 0, 1, · · · ,m− 1, to

it. The next term, after applying σm
n to X1Xk2 · · ·Xkℓ−1

Xkℓ
, is

(2.5) X1+mXk2+m · · ·Xkℓ−1+mXkℓ+m.

However, Rr1,...,rℓ(n) is a short cycle of length m (hypothesis), thus term (2.5) is equal to one of the terms
on the list (2.4). In other words, there is i ∈ {2, 3, . . . , ℓ} such that

ki = 1 +m(2.6)

ki+j = k1+j +m for j ∈ {1, 2, . . . , ℓ− i}
n+ kj = kℓ−i+1+j +m for j ∈ {1, 2, . . . , i− 1}.

Therefore, the term (2.5) is given by

(2.7) Xki
Xki+1

· · ·Xkℓ
X1Xk2

· · ·Xki−1︸ ︷︷ ︸
i−1 variables

and it is also a generator for Rr1,...,rℓ(n).
The terms of Rr1,...,rℓ(n) can now be re-written as

XkiXki+1 · · · Xkℓ
X1Xk2 · · ·Xki−1(2.8)

Xki+1Xki+1+1 · · · Xkℓ+1X2Xk2+1 · · ·Xki−1+1

...

Xki+m−1Xki+1+m−1 · · · Xkℓ+m−1X2Xk2+m−1 · · ·Xki−1+m−1.

Again, the next term, after applying σm
n to XkiXki+1 · · ·Xkℓ

X1Xk2 · · ·Xki−1 is

(2.9) Xki+mXki+1+m · · ·Xkℓ+m X1+mXk2+m · · ·Xki−1+m︸ ︷︷ ︸
i−1 variables

and arguing as before (see (2.6)) implies that this term has the form

(2.10) Xk2i−1
· · ·Xkℓ

X1Xk2
· · ·Xki−1︸ ︷︷ ︸

i−1 variables

X1+mXk2+m · · ·Xki−1+m︸ ︷︷ ︸
i−1 variables

and it is also a generator for Rr1,...,rℓ(n).
Continue applying this argument to get that

(2.11) X1Xk2 · · ·Xki−1X1+mXk2+m · · ·Xki−1+m · · ·X1+(d−1)mXk2+(d−1)m · · ·Xki−1+(d−1)m

is a generator of Rr1,r2,...,rℓ(n). Observe that

(2.12) ℓ = d(i− 1) =
n

m
(i− 1).

Thus, let q := i− 1 = mℓ/n. Since kq+1 = ki = 1 +m, then 1 < k1 < · · · < kq ≤ m and

(2.13)

n
m−1∏
j=0

X1+jmXk2+jm · · ·Xkq+jm
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is a generator of Rr1,...,rℓ(n). This concludes the proof. □

The following results are inmediate consequences of this theorem.

Corollary 2.3. Each generator of a short cycle of size m in n variables has the form

(2.14)

n
m−1∏
j=0

Xk1+jmXk2+jm · · ·Xkq+jm

for some 1 ≤ k1 < k2 < · · · < kq < k1 + m where q = mℓ/n and it is understood that the indices of the
variables are to be taken mod n with reduced residue system {1, 2, . . . , n}.

Corollary 2.4. There are not short cycles in n variables and of degree ℓ if and only if gcd(n, ℓ) = 1. In
particular, if gcd(n, ℓ) > 1, then every divisor d of gcd(n, ℓ) produces a short cycle of length n/d. The
converse is also true, that is, if there is a short cycle in n variables of degree ℓ of length m, then n/m divides
gcd(n, ℓ).

Let us consider the expression

(2.15)

n
m−1∏
j=0

Xk1+jmXk2+jm · · ·Xkq+jm,

with the same conditions as in Corollary 2.3. Observe that, by taking the indices mod n, we have

σm
n ·

n
m−1∏
j=0

Xk1+jmXk2+jm · · ·Xkq+jm =

n
m−1∏
j=0

Xk1+(j+1)mXk2+(j+1)m · · ·Xkq+(j+1)m(2.16)

=

n
m∏

j=1

Xk1+jmXk2+jm · · ·Xkq+jm

=

n
m−1∏
j=1

Xk1+jmXk2+jm · · ·Xkq+jm

×Xk1+(n/m)mXk2+(n/m)m · · ·Xkq+(n/m)m

=

n
m−1∏
j=0

Xk1+jmXk2+jm · · ·Xkq+jm.

Therefore,

σm
n ∈ Stab

 n
m−1∏
j=0

Xk1+jmXk2+jm · · ·Xkq+jm

 ,

which implies that (2.15) produces a short cycle of length a divisor of m (regardless of the values of the ki’s).

Example 2.5. Consider the case when n = 18, ℓ = 12 and m = 6. In this case, q = mℓ/n = 4. Then, the
monomial

(2.17)

2∏
j=0

Xk1+6jXk2+6jXk3+6jXk4+6j ,

where 1 ≤ k1 < k2 < k3 < k4 ≤ 6, generates a short cycle of length a divisor of 6. Indeed, if, for example,
k1 = 1, k2 = 3, k3 = 5 and k4 = 6, then the short cycle generated by

(2.18)

2∏
j=0

Xk1+6jXk2+6jXk3+6jXk4+6j = X1X3X5X6X7X9X11X12X13X15X17X18
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has length 6. Explicitely,

R1,3,5,6(18) = X1X3X5X6X7X9X11X12X13X15X17X18 ⊕
X1X2X4X6X7X8X10X12X13X14X16X18 ⊕
X1X2X3X5X7X8X9X11X13X14X15X17 ⊕
X2X3X4X6X8X9X10X12X14X15X16X18 ⊕
X1X3X4X5X7X9X10X11X13X15X16X17 ⊕
X2X4X5X6X8X10X11X12X14X16X17X18.

On the other hand, if k1 = 1, k2 = 3, k3 = 4 and k4 = 6, then the short cycle generated by

(2.19)

2∏
j=0

Xk1+6jXk2+6jXk3+6jXk4+6j = X1X3X4X6X7X9X10X12X13X15X16X18

has length 3. Explicitely,

R1,3,4,6(18) = X1X3X4X6X7X9X10X12X13X15X16X18 ⊕
X1X2X4X5X7X8X10X11X13X14X16X17 ⊕
X2X3X5X6X8X9X11X12X14X15X17X18.

An explanation of why, in this case, the cycle length is 3 and not 6 is given by the fact that k3 = k1 +3 and
k4 = k2 + 3. Thus, X1X3X4X6X7X9X10X12X13X15X16X18 can be identified with

(2.20) X1X3X4X6X7X9X10X12X13X15X16X18 =

5∏
j=0

X1+3jX3+3j

and therefore, it must generate a short cycle of length a divisor of 3.

3. Count of short cycles

In this section we count the number of short cycles of length m in n variables of degree ℓ. We start with
the following definitions.

Definition 3.1. Suppose that ℓ and n are positive integers with ℓ < n. Let m be a divisor of n such that
n/m divides ℓ. We define the following:

qm(n, ℓ) =
mℓ

n
,(3.1)

Dm(n, ℓ) = {1 < d < m : d|m and qd(n, ℓ) ∈ N},
Cm(n, ℓ) = {Rr1,...,rℓ(n) : Rr1,...,rℓ(n) is a cycle of length m}.

Observe that, in particular, Cn(n, ℓ) is the set of all long cycles in n variables of degree ℓ.

Theorem 2.2 can be used to provide a recursive definition for #Cm(n, ℓ) (if A is a set, #A represents its
cardinality).

Theorem 3.2. Suppose that ℓ and n are positive integers with ℓ < n. Let m be a divisor of n such that n/m
divides ℓ. Then,

(3.2) #Cm(n, ℓ) =
1

qm(n, ℓ)

( m− 1

qm(n, ℓ)− 1

)
−

∑
d∈Dm(n,ℓ)

qd(n, ℓ)#Cd(n, ℓ)


Proof. Recall that every cycle of length m has a generator of the form

(3.3)

n
m−1∏
j=0

X1+jmXk2+jm · · ·Xkq+jm,

where q = qm(n, ℓ) and 1 < k2 < · · · < kq ≤ m. Observe that the most important part of this generator is

(3.4) X1Xk2
· · ·Xkq
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because the rest of it can be obtained from this piece. Thus, there are(
m− 1

qm(n, ℓ)− 1

)
different generators of short cycles of type (3.3). It is not guaranteed that everyone of these generators
generates a cycle of length m. In fact, some of these generators may generate cycles of length a divisor of
m (such divisors must belong to Dm(n, ℓ)). Therefore, if we want to count how many cycles of length m we
have in this setting, we must eliminate the cycles with length a divisor of m. Also, since every term of cycle
Rr1,...,rℓ(n) is a generator, then it is possible that some of the generators of type (3.3) generate the same
cycle. So we must also take that into account.

Suppose that Rr1,...,rℓ(n) is a cycle of length m. Two generators of type (3.3) generate Rr1,...,rℓ(n) if and
only if they appear as terms of it. Therefore, we must count how many terms of Rr1,...,rℓ(n) have X1 as one
of its variables. This is actually not hard. In fact, the cycle Rr1,...,rℓ(n) has exactly qm(n, ℓ) terms that have
X1 as one of its variables. Therefore, each cycle of length m has exactly qm(n, ℓ) generators of type (3.3).

We know that there are (
m− 1

qm(n, ℓ)− 1

)
different generators of cycles of type (3.3). We want those that generate cycles of length m. Therefore, we
must eliminate the ones that generate cycles of length a divisor of m. By the discussion above, for each
d ∈ Dm(n, ℓ), the amount of generators of type (3.3) that generate a cycle of length d is given by the number
of cycles of length d times qd(n, ℓ), that is, it is given by qd(n, ℓ)#Cd(n, ℓ). Therefore, there are(

m− 1

qm(n, ℓ)− 1

)
−

∑
d∈Dm(n,ℓ)

qd(n, ℓ)#Cd(n, ℓ)

generators of type (3.3) that generate cycles of length m. Since each cycle of length m has exactly qm(n, ℓ)
generators of type (3.3), then it is clear that

(3.5) #Cm(n, ℓ) =
1

qm(n, ℓ)

( m− 1

qm(n, ℓ)− 1

)
−

∑
d∈Dm(n,ℓ)

qd(n, ℓ)#Cd(n, ℓ)

 .

This concludes the proof. □

Observe that the formula given by the previous theorem can be re-written as

#Cm(n, ℓ) =
1

qm(n, ℓ)

(
m− 1

qm(n, ℓ)− 1

)
−

∑
d∈Dm(n,ℓ)

qd(n, ℓ)

qm(n, ℓ)
#Cd(n, ℓ)(3.6)

=
1

m

(
m

qm(n, ℓ)

)
−

∑
d∈Dm(n,ℓ)

d

m
#Cd(n, ℓ).

Corollary 3.3. Let n and ℓ be integers with ℓ < n. Suppose that gcd(n, ℓ) = 1. Then,

(3.7) #Cn(n, ℓ) =
1

ℓ

(
n− 1

ℓ− 1

)
.

In particular, in the case that the number of variables is 2n + 1 and the degree is ℓ = n + 1, the number of
cycles of length 2n+ 1 (long cycles) is given by the n-th Catalan number

(3.8) #C2n+1(2n+ 1, n+ 1) =
1

n+ 1

(
2n

n

)
.

Proof. Observe that since gcd(n, ℓ) = 1, then Dn(n, ℓ) = ∅. Clearly, qn(n, ℓ) = ℓ. Therefore,

(3.9) #Cn(n, ℓ) =
1

ℓ

(
n− 1

ℓ− 1

)
.

This concludes the proof. □



8 JOSÉ E. CALDERÓN-GÓMEZ, LUIS A. MEDINA, AND CARLOS MOLINA-SALAZAR

Observe that
1

ℓ

(
n− 1

ℓ− 1

)
=

1

ℓ

(n− 1)!

(ℓ− 1)!(n− ℓ)!
=

1

n

n!

ℓ!(n− ℓ)!
=

1

n

(
n

ℓ

)
.

Therefore, Corollary 3.3 tells us that, when gcd(n, ℓ) = 1,

(3.10) #Cn(n, ℓ) =
1

n

(
n

ℓ

)
.

This formula appears in [32, Th. 9]. Also, since gcd(n, ℓ) = 1, this number counts the different necklaces
using n− ℓ black pebbles and ℓ white pebbles (two necklaces are considered the same if one can be obtained
from the other by a rotation). This was already pointed out in [32]. There are different combinatorial
interpretations for #C2n+1(2n+ 1, n+ 1) (it is the n-th Catalan number).

Corollary 3.4. Let n and ℓ be integers with ℓ < n. Let m be a divisor of n such that n/m divides ℓ. Then,
for every positive integer a, we have

qm(an, aℓ) = qm(n, ℓ) and Dm(an, aℓ) = Dm(n, ℓ).

In particular,

#Cm(an, aℓ) = #Cm(n, ℓ).

Example 3.5. Consider n = 96, ℓ = 12 and m = 32. Theorem 3.2 implies that

#C32(96, 12) = 1120.

Therefore,

#C32(192, 24) = 1120,

#C32(288, 36) = 1120,

and, in general,

#C32(96a, 12a) = 1120,

for every a ∈ N.

Theorem 3.2 can be used to provide bounds for #Cm(n, ℓ). Recall that if n is a natural number, then
Γ(n+ 1) = n! where

(3.11) Γ(z) =

∫ ∞

0

xz−1e−x dx, R(z) > 0

is the gamma function. The gamma function can be extended to the whole complex plane except the
non-positive integers in several ways. One of them is its definition as an infinite product due to Euler

(3.12) Γ(z) =
1

z

∞∏
n=1

(
1 +

z

n

)−1
(
1 +

1

n

)z

.

Another one is Weiestrass definition

(3.13) Γ(z) =
e−γz

z

∞∏
n=1

(
1 +

z

n

)−1

ez/n,

where γ is the Euler-Mascheroni constant

(3.14) γ = lim
n→∞

(
n∑

k=1

1

k
− log(n)

)
≈ 0.5772156649.

The gamma function can be used to extend the binomial numbers to non-integer values via

(3.15)

(
n

k

)
=

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
.
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Corollary 3.6. Suppose that ℓ and n are positive integers with ℓ < n. Let m be a divisor of n such that
n/m divides ℓ. Then,

(3.16)
1

qm(n, ℓ)

( m− 1

qm(n, ℓ)− 1

)
−

∑
d |m

1<d<m

(
d− 1
dℓ
n − 1

) ≤ #Cm(n, ℓ) ≤ 1

qm(n, ℓ)

(
m− 1

qm(n, ℓ)− 1

)
.

Proof. The upper bound follows directly from (3.2). For the lower bound, observe that if d ∈ Dm(n, ℓ), then

(3.17) qd(n, ℓ)#Cd(n, ℓ) ≤
(
d− 1
dℓ
n − 1

)
.

Thus, ∑
d∈Dm(n,ℓ)

qd(n, ℓ)#Cd(n, ℓ) ≤
∑
d |m

1<d<m

dℓ

n
#Cd(n, ℓ)(3.18)

≤
∑
d |m

1<d<m

(
d− 1
dℓ
n − 1

)
.

This concludes the proof. □

Example 3.7. Let us study #C12(24, 12), that is, the number of short cycles of length 12 in 24 variables
and of degree 12. Observe that

q12(24, 12) =
12× 12

24
= 6.

Corollary 3.6 tells us that the value of #C12(24, 12) lies between

1

6

[(
11

5

)
−
(
1

0

)
−
(

2

1/2

)
−
(
3

1

)
−
(
5

2

)]
=

1

6

(
448− 16

3π

)
≈ 74.3837245456144

and
1

6

(
11

5

)
= 77.

Let us compute the exact value of #C12(24, 12). Note that D12(24, 12) = {2, 4, 6}. Observe that

q6(24, 12) =
6× 12

24
= 3

q4(24, 12) =
4× 12

24
= 2

q2(24, 12) =
2× 12

24
= 1.

These numbers can be used to calculate the following three values:

#C2(24, 12) =

(
1

0

)
= 1

#C4(24, 12) =
1

2

[(
3

1

)
−#C2(24, 12)

]
=

1

2
(3− 1) = 1

#C6(24, 12) =
1

3

[(
5

2

)
−#C2(24, 12)

]
=

1

3
(10− 1) = 3.

Therefore,

#C12(24, 12) =
1

6

[(
11

5

)
− 3#C6(24, 12)− 2#C4(24, 12)−#C2(24, 12)

]
=

1

6
[462− 3× 3− 2× 1− 1]

= 75,

which lies between 74.3837245456144 and 77, as predicted.
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Let us study now #C24(48, 24) i.e. the number of short cycles of length 24 in 48 variables and of degree
24. Since q24(48, 24) = 12, then Corollary 3.6 tells us that the value of #C24(48, 24) lies between

1

12

[(
23

11

)
−
(
1

0

)
−
(

2

1/2

)
−
(
3

1

)
−
(
5

2

)
−
(
7

3

)
−
(
11

5

)]
=

1

12

(
1351567− 16

3π

)
≈ 112630.441862

and
1

12

(
23

11

)
=

676039

6
≈ 112673.166667.

Let us compute the exact value of #C24(48, 24). Observe that D24(48, 24) = {2, 4, 6, 8, 12}. Since 48 =
2× 24 and 24 = 2× 12, then Corollary 3.4 implies

q12(48, 24) = q12(24, 12) = 6

q6(48, 24) = q6(24, 12) = 3

q4(48, 24) = q4(24, 12) = 2

q2(48, 24) = q2(24, 12) = 1

and

#C2(48, 24) = #C2(24, 12) = 1

#C4(48, 24) = #C4(24, 12) = 1

#C6(48, 24) = #C6(24, 12) = 3

#C12(48, 24) = #C12(24, 12) = 75.

These take care of most of the elements of D24(48, 24). We are still missing 8 ∈ D24(48, 24). Note that
q8(48, 24) = 4, thus

#C8(48, 24) =
1

4

[(
7

3

)
− 2#C4(48, 24)−#C2(48, 24)

]
=

1

4
[35− 2× 1− 1]

= 8.

Finally,

#C24(48, 24) =
1

12

[(
23

11

)
− 6× 75− 4× 8− 3× 3− 2× 2− 1

]
=

1

12
[1352078− 494]

= 112632,

which lies between 112630.441862 and 112673.166667, as predicted.

Observe that the cumbersome part of the recursive formula given by Theorem 3.2 for #Cm(n, ℓ) is to
control the divisors in Dm(n, ℓ). The previous example illustrated that. Of course, there are some instances,
like the next one, on which we know every posible divisor and can provide an explicit formula for #Cm(n, ℓ).

Proposition 3.8. Let p be a prime. Let β, α, s and t be positive integers such that spα < pβ, 0 ≤ t < α
and p does not divide s. Then,

(3.19) #Cpβ−α+t(pβ , spα) =
1

spt

[(
pβ−α+t − 1

spt − 1

)
−
(
pβ−α+t−1 − 1

spt−1 − 1

)]
.

The next result is similar in the sense that we have control over the divisors of m. Incidentally, it also
shows that the upper bound in Corollary 3.6 can be attained.

Proposition 3.9. Let n, ℓ and m be positive integers such that ℓ < n and n/m divides ℓ. Suppose that

n = pα1
1 pα2

2 · · · pαr
r ,

ℓ = apαr
r ,

m = pα1
1 pα2

2 · · · pαr−1

r−1
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where pj, j = 1, . . . , r are different primes, αj, j = 1, . . . , r are non-negative integers and a is a positive
integer satisfying gcd(a, pj) = 1 for all j. Then,

(3.20) #Cm(n, ℓ) =
1

qm(n, ℓ)

(
m− 1

qm(n, ℓ)− 1

)
=

1

a

(
m− 1

a− 1

)
.

Proof. Observe that

(3.21) qm(n, ℓ) =
mℓ

n
=

apα1
1 pα2

2 · · · pαr−1

r−1 pαr
r

pα1
1 pα2

2 · · · pαr−1

r−1

= a.

It is clear that Dm(n, ℓ) = ∅ in this case. Theorem 3.2 implies

(3.22) #Cm(n, ℓ) =
1

qm(n, ℓ)

(
m− 1

qm(n, ℓ)− 1

)
=

1

a

(
m− 1

a− 1

)
.

This concludes the proof. □

Observe that the hyptheses of Proposition 3.9 implies gcd(m, a) = 1. Also,

(3.23)
1

a

(
m− 1

a− 1

)
=

1

m

(
m

a

)
.

Thus, if

n = pα1
1 pα2

2 · · · pαr
r ,

ℓ = apαr
r ,

m = pα1
1 pα2

2 · · · pαr−1

r−1

where pj , j = 1, . . . , r are different primes, αj , j = 1, . . . , r are non-negative integers and a is a positive
integer satisfying gcd(a, pj) = 1 for all j, then #Cm(n, ℓ) counts the different necklaces using m − a black
pebbles and a white pebbles.

4. Concluding remarks

We characterized a family of generators for short cycles. We used these generators to provide a recursive
formula for #Cm(n, ℓ) i.e. for the number of short cycles in n variables of degree ℓ that have length m, where
m is a divisor of n such that n/m divides ℓ. We also provided bounds #Cm(n, ℓ). We hope and expect to
see applications of our results.
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