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Abstract. In this article we show that Walsh-Hadamard transformations of generalized p-ary functions
whose components are symmetric, rotation symmetric or a combination or concatenation of them are C-

finite sequences. This result generalized many of the known results for regular p-ary functions. We also
present a study of the roots of the characteristic polynomials related to these sequences and show that

properties like balancedness and being bent are not shared by the underline p-ary functions.

1. Introduction

An n-variable Boolean function is a map from Fn2 → F2 where F2 represents the field of two elements.
The set of all n-variable Boolean functions is usually denoted by Bn. This branch of combinatorics have
applications to different scientific fields including coding theory, cryptography, game theory and information
theory.

Every Boolean function f ∈ Bn can be identified with a multi-variable polynomial

(1.1) f(X1, . . . , Xn) =
⊕

a=(a1,...,an)∈Fn
2

λa

n∏
j=1

X
aj
j ,

where λa ∈ F2 for every a ∈ Fn2 and ⊕ represents addition mod 2. This polynomial is known as the algebraic
normal form (or ANF for short) of the Boolean function f . The algebraic degree of f ∈ Bn is the degree of
its ANF.

The Hamming weight of a vector x ∈ Fn2 , denoted by wt(x), is the number of its entries that are equal
to 1. Order the elements of the vector space Fn2 in lexicographical order. Let x0 = (0, 0, . . . , 0, 0),x1 =
(0, 0, . . . , 0, 1),x2 = (0, 0, . . . , 1, 0), . . . ,x2n−1 = (1, 1, . . . , 1, 1). The truth table of f ∈ Bn is the vector
[f(x0), f(x1), . . . , f(x2n−1)]. The weight (or Hamming weight) of a Boolean function f ∈ Bn, denoted by
wt(f), is the number of 1 in its truth table.

Two properties that are very important in some cryptographic applications are non-linearity and balanced-
ness. The non-linearity of a Boolean function f ∈ Bn is the distance from f to the set of affine functions in
n variables,

(1.2) nl(f) = min
g affine

dist(f, g)

where dist(f, g) is the Hamming distance (number of bits where they differ) between f and g. A function
f ∈ Bn is called balanced if the number of zeros and the number of ones in its truth table are the same. This
is equivalent to say that the Hamming weight of the function wt(f) is 2n−1.

The non-linearity of a Boolean function f ∈ Bn is often studied via Walsh-Hadamard transformations.
The (unnormalized) Walsh-Hadamard transformation of f ∈ Bn at a ∈ Fn2 is the real-valued function

(1.3) Hf (a) =
∑
x∈Fn

2

(−1)f(x)⊕a·x.

The non-linearity of a Boolean function f is related to its Hadamard-Walsh transformation via the equation

(1.4) nl(f) = 2n−1 − 1

2

(
max
a∈Fn

2

|Hf (a)|
)
.
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Highly non-linear Boolean functions are advantageous in some cryptographic applications. Boolean functions
with the highest non-linearity, i.e. 2n−1 − 2n/2−1 (n even), are known as bent functions. These functions
were introduced in the mid 1970’s in [30] . Notice that f ∈ Bn is bent if

(1.5)
1

2n/2
|Hf (a)| = 1

for all a ∈ Fn2 .
Balancedness of Boolean functions is usually studied via Hamming weights or via exponential sums. The

exponential sum of a Boolean function f ∈ Bn is defined as

(1.6) S(f) =
∑
x∈Fn

2

(−1)f(x).

Observe that a Boolean function is balanced if and only if S(f) = 0. Also, the exponential sum of f coincides
with its Hadamard-Walsh transform at 0, that is, S(f) = Hf (0). The Hamming weight of a Boolean function
and its exponential sum are linked by the equation

(1.7) wt(f) = 2n−1 − 1

2
S(f).

For more comprehensive information about Boolean functions, please refer to [1, 3, 16].
Balancedness of special families like symmetric and rotation symmetric Boolean functions has been the

subject of several studies [4, 5, 6, 7, 11, 12, 13, 15, 17, 19, 28]. A Boolean function f ∈ Bn is called symmetric
if it is invariant under the action of the symmetric group Sn of n symbols, that is, if

f
(
Xσ(1), . . . , Xσ(n)

)
= f(X1, . . . , Xn)

for every σ ∈ Sn. On the other hand, a Boolean function f ∈ Bn is called rotation symmetric if it is invariant
under the action of the cyclic group of Cn of n elements, that is, if

f
(
Xσ(1), . . . , Xσ(n)

)
= f(X1, . . . , Xn)

for every σ ∈ Cn.
It is well-known that ANF of a symmetric Boolean function f ∈ Bn has the form

(1.8) f = en,k1 ⊕ en,k2 ⊕ · · · ⊕ en,ks

where 0 ≤ k1 < · · · < ks are integers and en,k represents the n-variable elementary symmetric polynomial
of degree k. For simplicity, we often use the notation en,[k1,...,ks] to represent the right-hand side of (1.8). It
is known that if 0 ≤ k1 < · · · < ks are fixed integers, then the sequence {S(en,[k1,...,ks])}n satisfies a linear
recurrence with constant coefficients [2, 4], in other words, it is a C-finite sequence. To be more specific, the
sequence {S(en,[k1,...,ks])}n satisfies the recurrence whose characteristic polynomial is given by

(1.9) (X − 2)Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1),

where r = blog2(ks)c + 1 and Φn(X) represents the n-th cyclotomic polynomial. This result was extended
to Walsh transformations of symmetric Boolean functions in [7] and to every finite field in [9].

Rotation symmetric Boolean functions were introduced by Pieprzyk and Qu [28] (although, they did
appear before in the work of Filiol and Fontaine [18] as idempotents). They showed that these functions are
useful, among other things, in the design of fast hashing algorithms with strong cryptographic properties.
Let 1 < j1 < · · · < js be integers. Rotation symmetric Boolean functions of the form

(1.10) Rn,[j1,··· ,js] = X1Xj1 · · ·Xjs ⊕X2Xj1+1 · · ·Xjs+1 ⊕ · · · ⊕XnXj1−1 · · ·Xjs−1,

where none of the terms overlap or

(1.11) Rn,[j1,··· ,js] = X1Xj1 · · ·Xjs ⊕ · · · ⊕XkXj1+k · · ·Xjs+k

where Xk+1Xj1+k+1 · · ·Xjs+k+1 is the first term overlapping one of the previous terms; are called a monomial
rotation symmetric Boolean function (the indices are taken modulo n and the complete system of residues
mod n is {1, 2, · · · , n}) . We say that Rn,[j1,··· ,js] is long cycle if the period is n and short cycle if the period
is a nontrivial divisor of n. The rotation

R4,[2,3] = X1X2X3 ⊕X2X3X4 ⊕X3X4X1 ⊕X4X1X2



WALSH-HADAMARD TRANSFORMS OF GENERALIZED p-ARY FUNCTIONS AND C-FINITE SEQUENCES 3

is an example of a long cycle, while

R4,[3] = X1X3 ⊕X2X4

is an example of a short cycle. In [11], T. Cusick proved that, as in the case of symmetric Boolean functions,
sequences of weights of rotation symmetric Boolean functions are C-finite. Cusick’s result was later gener-
alized to Walsh transformations [7] and to every finite field [8]. In the particular case of [8], their approach
introduced an auxiliary function which they called trapezoid function. Let 1 < j1 < · · · < js be postive
integers. The function

(1.12) Tn,[j1,...,jk] = X1Xj1 · · ·Xjs +X2Xj1+1 · · ·Xjs+1 + · · ·+Xn+1−jsXj1+n−js · · ·Xjs−1+n−jsXn,

is called a trapezoid function.
In this article, we generalize these results to some generalizations of Boolean functions. There are various

ways on which the concept of a Boolean function can be generalized. One of the most common ones is the
concept of a generalized Boolean function. A generalized Boolean function in n variables is a function from
the vector space Fn2 to Zm, where Zm represents the integers mod m. The set of all these functions is usually

denoted by GB(m)
n . In the case when m is a power of two, that is, when m = 2` for ` a positive integer, then

we can associate to any f ∈ GB(2`)
n a unique sequence of Boolean functions aj ∈ Bn, 0 ≤ j ≤ `− 1, such that

f(X) =

`−1∑
j=0

aj(X)2j .

The concept of Hadamard-Walsh transformation can be carried over generalized Boolean functions. If

f ∈ GB(m)
n , then its generalized Hadamard-Walsh transformation at a ∈ Fn2 is definded as the complex-valued

function

(1.13) H(m)
f (a) =

∑
x∈Fn

2

ξf(x)
m (−1)a·x,

where ξm = exp(2πi/m). The concept of bent function can also be generalized to these functions. We say

that f ∈ GB(m)
n is a generalized bent function if

(1.14)
1

2n/2

∣∣∣H(m)
f (a)

∣∣∣ = 1

for every a ∈ Fn2 . Generalized bent functions is the subject of active research [20, 25, 29, 31, 32, 33].
Many cryptographic properties, like correlation immune functions, resilient functions and bent functions

have been extended to other finite fields [14, 21, 22, 23, 24]. Let p be a prime and r > 0. Let Fq, q = pr,
represent the finite field of q elements. A function from the vector space Fnq to the field Fq is called an
n-variable q-ary function. The set of all n-variable q-ary functions will be denoted by Bn,q. As in the case
of their binary counterpart, every q-ary function f ∈ Bn,q can be indentify with a multivariable polynomial
known as its algebraic normal form (or ANF for short)

(1.15) f (X1, X2, . . . , Xn) =
∑

a=(a1,...,an)∈Fn
p

λa

(
n∏
i=1

xaii

)
, λa ∈ Fq.

In (1.15), addition and multiplication is understood to be made in Fq. The algebraic degree of f ∈ Bn,q is
defined as the degree of the algebraic normal form of f .

The Hadamard-Walsh transform at a ∈ Fnq of an n-variable q-ary function f is given by complex-valued
function

(1.16) Hf,Fq
(a) =

∑
x∈Fn

q

ξTr(f(x)+a·x)
p ,

where ξp = exp(2πi/p), Tr = TrFq/Fp
is the field trace function from Fq to Fp, and a · x represents the dot

product on Fnq . A function f ∈ Bn,q is called bent if

(1.17)
1

qn/2

∣∣Hf,Fq
(a)
∣∣ = 1

for every a ∈ Fnq .
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The exponential sum of an n-variable q-ary function f is defined as

(1.18) SFq
(f) =

∑
x∈Fn

q

ξTr(f(x))
p .

As in the Boolean case, exponential sums could be used to detect balancedness of these functions. We also
have Hf,Fq

(0) = SFq
(f). In [9] it was proved that the sequence {SFq

(en,k)}n is C-finite and it satisfies the
recurrence whose characteristic polynomial is given by

D−1∏
a1=0

a1∏
a2=0

· · ·
aq−2∏
aq−1=0

(
X −

(
1 + ξa1D + · · ·+ ξ

aq−1

D

))
,(1.19)

where D = pblogp(k)c+1. This is a generalization of (1.9). Recently, the results presented of [9] were used to
study the value distribution of elementary symmetric polynomials over finite fields [26].

In this article, we study generalized p-ary functions. A function from Fnp to Zm is called a generalized

p-ary function. The set of all n-variable generalized p-ary functions will be denoted by GB(m)
n,p . As in the

Boolean case, if m is a power of p, that is, if m = p`, then for every f ∈ GB(p`) there is a unique sequence
of p-ary functions aj ∈ Bn,p, 0 ≤ j ≤ `− 1, such that

f(X) =

`−1∑
j=0

aj(X)pj .

The generalized Walsh transform at a ∈ Fnp of a generalized p-ary function f ∈ GB(m)
n,p is given by

(1.20) H(m)
f,Fp

(a) =
∑
x∈Fn

p

ξf(x)
m ξa·xp ,

where ξm = exp(2πi/m). Our main goal is to show that sequences of Walsh transformations of generalized
p-ary functions whose components are symmetric, rotation symmetric and combinations or concatenations
of them are C-finite sequences. This will generalize all known results in this area to this set of functions.

2. Recursions associated to generalized Walsh-Hadamard transformations over Fp
As mentioned in the introduction, our goal is to show that sequences of Walsh-Hadamard transformations

of generalized p-ary functions whose components are either symmetric, rotation symmetric or a combination
or concatenation of them, are C-finite sequences. We start with some known results.

In [9], it is shown that the exponential sum SFp(en,k) can be written as

(2.1) SFp
(en,k) =

D−1∑
j1=0

j1∑
j2=0

· · ·
jp−2∑
jq−1=0

cj1,j2,...,jq−1
(k)
(

1 + ξ−j1D + · · ·+ ξ
−jq−1

D

)n
,

where D = pblogp(k)c+1, ξD = exp(2πi/D) and cj1,j2,...,jq−1
(k) are some constants depending on k. Equation

(2.1) is a generalization to the one provided by Cai et al. [2] for the binary field. One of its consequence is
the fact that the sequence {SFpf (en,k)}n satisfies the recurrence whose characteristic polynomial is given by
(1.19).

In [26], it is proved that a formula similar to (2.1) exists for exponential sums of perturbations of the
elementary symmetric polynomial en,k (the only change are the values of the constants cj1,j2,...,jq−1

(k)). Let
j be a fixed positive integer and F (X) ∈ Fp[X1, . . . , Xj ]. The function en,k + F (X) is called a perturbation
of en,k. Since SFp(en,k + F (X)) has a formula similar to (2.1), then the sequence {SFp(en,k + F (X))} is
C-finite and satisfies the recurrence whose characteristic polynomial is given by (1.19) as well.

The last result can be carried over Walsh-Hadamard transformations in the following manner. We want

to study the sequence {H(p)
en,k(a)}n. A necessary condition to be able to do that is that the tuple a must be

of dimension n. However we want a to be constant. This can be achieved by selecting an initial tuple a of
fixed dimension, say j < n, and continue right padding zeros to the end of a until its dimension is n. For
example, suppose that the initially selected tuple is a = (0, 2, 1, 3). When n = 5 we consider the tuple to be
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a = (0, 2, 1, 3, 0), when n = 6 we consider the tuple a = (0, 2, 1, 3, 0, 0), and so on. Note that this implies,
for example, that if a = (0, 2, 1, 3), then

Hen,k,Fq
(a) =

∑
x∈Fn

q

ξ
Tr(en,k(x)+a·x)
p

=
∑
x∈Fn

q

ξ
Tr(en,k(x)+2x2+x3+3x4)
p

= SFq
(en,k + 2X2 +X3 + 3X4).

Therefore, under this assumption on a, Hen,k
(a) can be viewed as a perturbation of en,k. Thus the sequence

{H(q)
en,k(a)} is C-finite and satisfies the recurrence whose characteristic polynomial is given by (1.19). A

similar argument can be done for rotation symmetric polynomials. There is a difference though, the results
from [8] can be used to prove that {HRn,[j1,··· ,js],Fq

(a)} is a C-finite sequence, but cannot be used to give
explicit recurrences for them.

Recall that every generalized p-ary function f ∈ GB(p`)
n,Fp

can be written as

f(X) = a0(X) + a1(X)p+ · · ·+ a`−1(X)p`−1(2.2)

where aj ∈ Bn,p. Suppose that Z is an indeterminate and m, s ∈ Fp. The well-known identity

p−1∑
j=0

ξj(m−s)p =

{
0, s 6= m

p, s = m

implies

p−1∑
s=0

p−1∑
j=0

ξj(m−s)p Zs =

p−1∑
s=0

p−1∑
j=0

ξj(m−s)p

Zs(2.3)

= pZm.

Therefore, if m ∈ Fp and Z is an indeterminate, then

(2.4) Zm =
1

p

p−1∑
s=0

p−1∑
j=0

ξj(m−s)p Zs

Equation (2.4) leads to the following lemma. Before stating the result, we introduce some notations. We
denote the list k0, . . . , kt by [kt]. A multiple sum like

(2.5)

m∑
k0=0

m∑
k1=0

· · ·
m∑

kt=0

ak0,k1,...,kt

will be denoted by

(2.6)

m∑
[kt]=0

a[kt]

and a multiple sum like

(2.7)

m∑
k0=0

m∑
k1=0

· · ·
m∑

kt=0

m∑
j0=0

m∑
j1=0

· · ·
m∑
jt=0

ak0,k1,...,kt;j0,j1,...,jt

by

(2.8)

m∑
[kt],[jt]=0

a[kt];[jt].

Lemma 2.1. Let Z = Z0 + Z1p+ · · ·+ Ztp
t with Zj indeterminates, l > t ≥ 0 and p a prime integer, then

ξZp` =

p−1∑
[jt],[kt]=0

C[jt];[kt] (ξp) ξ

t∑
m=0

jmZm

p
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where C[jt];[kt] (ξp) = 1
pt+1

(
t∏

s=0
ξks
pl−s

)
ξ
−

t∑
m=0

jmkm

p

Proof. Observe that ζZp` =
t∏

s=0
ζZs

pl−s . Equation (2.4) implies

ξZp` =

t∏
s=0

1

p

p−1∑
js=0

p−1∑
ks=0

ξjs(Zs−ks)
p ξks

pl−s


=

p−1∑
[jt];[kt]=0

 1

pt+1

(
t∏

s=0

ξks
p`−s

)
ξ
−

t∑
m=0

jmkm

p

 ξ

t∑
m=0

jmZm

p

=

p−1∑
[jt];[kt]=0

C[jt];[kt](ξp)ξ

t∑
m=0

jmZm

p ,

where C[jt];[kt] (ξp) = 1
pt+1

(
t∏

s=0
ξks
pl−s

)
ξ
−

t∑
m=0

jmkm

p . �

The previous lemma implies that the generalized Walsh-Hadamard transform H(p`)
f,Fp

(a) of a generalized

p-ary function f ∈ GB(p`)
n,Fp

can be expressed as linear combination of Walsh-Hadamard transform of p-ary

functions in Bn,Fp
.

Proposition 2.2. The generalized Walsh-Hadamard transform of a generalized p-ary function

f(X) = b0(X) + b1(X)p+ · · ·+ b`−1(X)p`−1,

where each bj ∈ Bn,Fp , is a linear combination of Walsh-Hadamard transforms of linear combinations of the
p-ary functions bj (X)’s.

Proof. Suppose that f ∈ GB(p`)
n,Fp

has the form

(2.9) f(X) = b0(X) + b1(X)p+ · · ·+ b`−1(X)p`−1

where bj ∈ Bn,Fp
, j = 0, 1, · · · , `− 1. Let a ∈ Fnp . Observe that Lemma 2.1 implies

H(p`)
f,Fp

(a) =
∑
x∈Fn

p

ξ
f(x)

p`
ξa·xp

=
∑
x∈Fn

p

ξb`−1(x)
p ξ

b0(x)+b1(x)p+···+b`−2(x)p`−2

p`
ξa·xp

=
∑
x∈Fn

p

ξb`−1(x)
p

 p−1∑
[j`−2];[k`−2]=0

C[j`−2];[k`−2](ξp)ξ

`−2∑
m=0

jmbm(x)

p

 ξa·xp

=

p−1∑
[j`−2];[k`−2]=0

C[j`−2];[k`−2](ξp)

∑
x∈Fn

p

ξ
b`−1(x)+

`−2∑
m=0

jmbm(x)+a·x
p


=

p−1∑
[j`−2];[k`−2]=0

C[j`−2];[k`−2](ξp)HG`,[j`−2],Fp
(a)

where G`,[j`−2](X) = b`−1(X)+
`−2∑
m=0

jmbm(X) and C[j`−2];[k`−2](ξp) as in Lemma 2.1. �

With Proposition 2.2 at hand, we are ready to stay the main result of this section.
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Theorem 2.3. Let p be a prime. Suppose that fn ∈ GB(p`)
n,Fp

can be written as

(2.10) fn(X) = b0(X) + b1(X)p+ · · ·+ b`−1(X)p`−1

where each component bj is symmetric, rotation symmetric or a combination and/or concatenation of them.

Suppose that a ∈ Fjp is fixed. Then the sequence
{
H(p`)
n (a)

}
n

is C-finite. In the particular case when each

bj = en,kj , then
{
H(p`)
n (a)

}
n

satisfies the recurrence whose characteristic polynomial is given by

D−1∏
a1=0

a1∏
a2=0

· · ·
ap−2∏
ap−1=0

(
X −

(
1 + ξa1D + · · ·+ ξ

ap−1

D

))
,(2.11)

where D = pblogp(max{k0,...,k`−1})c+1.

Proof. This is a direct application of Proposition 2.2 and the discussion so far. �

Example 2.4. Consider the prime p = 3 and the generalized 3-ary function given by fn = en,5 + 3Rn,[2,3].

Consider the vector a = (1, 2, 1). Theorem 2.3 tells us that
{
H(32)
fn

(a)
}

is a C-finite sequence.

3. A study of the Walsh-Hadamard transform when {Hfn,Fp
(a)} is a C-finite sequence

We know that the study of Walsh-Hadamard transforms of generalized p-ary functions H(p`)
f,Fp

(a) can be

reduced to the study of Walsh-Hadamard transforms of regular p-ary functions. In this section we study
sequences of the form {Hfn,Fp

(a)} where fn ∈ Bn,p. We start with a result about their closed formulas.

Proposition 3.1. Let p be a prime and E= Q (ξp), where ξp = exp(2πi/p) is a p-th primitive root of
unity. Let fn ∈ Bn,p be a family of p-ary functions. Suppose that for some fixed tuple a, the sequence{
Hfn,Fp (a)

}
n
⊆ E satisfies a linear recurrence with integral coefficients in E whose characteristic polynomial

is given by q(X). If q(X) is monic and irreducible and β1, β2, . . . , β` are the distinct roots of q(X), then

(3.1) Hfn,Fp (a) =
∑̀
j=1

cj(a)βnj

where each cj(a) ∈ E is a non-zero constant depending on a.

Proof. Since q(X) is irreducible, it does not have repeated roots. Using classic results in the theory of linear
recurrences yields

(3.2) Hfn,Fp
(a) =

n∑
j=1

cj (a)βnj

for some constants cj (a) ∈ E. It remains to prove that cj (a) 6= 0 for every j.
Let G = GalE(q(X)) be the Galois group of the polynomial q(X) ∈ E[X]. Since q(X) is irreducible, we

know that G is transitive, that is, for every i 6= j in {1, 2, . . . , `}, there is a σ ∈ G such that σ (βi) = βj . We
know that

{
Hfn,Fp

(a)
}
n∈N is a sequence of integral numbers that is not identically zero, which means that

there is a j0 ∈ {1, 2, . . . , `} such that cj0 (a) 6= 0. Consider j1 ∈ {1, 2, . . . , `} with j1 6= j0 and let σj0, j1 ∈ G
be such that σj0, j1 (βj0) = βj1 . Apply σj0, j1 to equation (3.2) to get

(3.3) Hfn,Fp
(a) = σj0, j1

(
Hfn,Fp

(a)
)

=

n∑
j=1

σj0, j1 (cj (a))σj0, j1 (βj)
n
,

where we used the fact that Hfn,Fp (a) ∈ E and so it is fixed by σj0, j1 . Equation (3.3) is equation (3.2), but
written in different order. However, since σj0, j1 (βj0) = βj1 , then

cj1 (a) = σj0, j1 (cj0 (a)) 6= 0.

This concludes the proof. �

Proposition 3.2 remains true if instead of requiring q(X) to be irreducible, we require it to have a square-
free irreducible factorization in E[X]. The next result bounds the roots of the characteristic polynomial of
the sequence

{
Hfn,Fp

(a)
}

.
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Theorem 3.2. Let p be a prime and E = Q(ξp) with ξp = exp(2πi/p). Let fn ∈ Bn,p be a family of
p-ary functions. Suppose that for some fixed tuple a, the sequence

{
Hfn,Fp (a)

}
n
⊆ E, satisfies a linear

recurrence with integral coefficients. Let q (X) ∈ E[X] be the characteristic polynomial of the minimal of
such recurrences. Suppose that q(X) has a square-free irreducible factorization in E[X], that is,

q(X) = q1(X) · · · qs(X),

where each qj(X) is irreducible in E[X]. Then, every root β of q (X) satisfies |β| ≤ p. Moreover, if each
qj(X) also happens to be in Q[X] and deg(qj(X)) > 1, then equality is attained only if there is a j such that
qj(pX) is a palindromic polynomial of even degree.

Proof. Let β1, . . . , β` be the roots of q(X). Suppose that β1 is the root with the highest modulus. We will
prove the first statement by showing that |β1| > p leads to a contradiction.

Suppose first that β1 is unique with this property, that is, |βj | < |β1| for j = 2, . . . , `. We know that

Hfn,Fp
(a) =

∑̀
j=1

cj(a)βnj ,

where each cj(a) is a non-zero constant. Thus, as n increases,

Hfn,Fp
(a) ∼ c1(a)βn1 .

If it is true that |β1| > p, then there is an n0 ∈ N such that for n > n0, we have |Hfn,Fp
(a) | > pn. This is

clearly impossible because the definition of Hfn,Fp
(a) implies |Hfn,Fp

(a) | ≤ pn. We conclude that |β1| ≤ p
and so the first statement of the theorem is true in this case.

Suppose now that the highest modulus is achieved on more than one root. Suppose that β1, β2, . . . , βt are
the roots on which the highest modulus is achieved, that is,

|βj | < |β1| = |β2| = · · · = |βt|

for j = t+ 1, . . . , `. Write

β1 = |β1|e2πθ1 , β2 = |β1|e2πθ2 , · · · , βt = |β1|e2πθt ,

where θ1, θ2, . . . , θt ∈ [0, 1). Then, as n increases,

Hfn,Fp
(a) ∼ c1(a)βn1 + c2(a)βn2 + · · ·+ ct(a)βnt

∼ |β1|n
(
c1(a)e2πinθ1 + c2(a)e2πinθ2 + · · ·+ ct(a)e2πinθt

)
.

Let ε > 0 and

M = sup
{∣∣c1(a)e2πinθ1 + c2(a)e2πinθ2 + · · ·+ ct(a)e2πinθt

∣∣ : n ∈ N
}
.

There is a subsequence {nk}∞k=1 of positive integers such that

M − ε <
∣∣c1(a)e2πinkθ1 + c2(a)e2πinkθ2 + · · ·+ ct(a)e2πinθt

∣∣ ≤M
for every k. Therefore,∣∣∣Hfnk

,Fp
(a)
∣∣∣ ∼ |β1|n

∣∣c1(a)e2πinkθ1 + c2(a)e2πinkθ2 + · · ·+ ct(a)e2πinθt
∣∣ > |β1|nk(M − ε).

If it is true that |β1| > p, then there is an k0 ∈ N such that for k > k0, we have |Hfnk
,Fp

(a) | > pn, which is
impossible. Therefore, the first statement is also true for this case and therefore true in general.

We now prove the second statement. Suppose that each qj(X) also happens to have rational coefficients.
Suppose that |β1| = p. Then β1 = pe2πiθ for 0 ≤ θ < 1 and

0 = q
(
pe2πiθ

)
= q1(pe2πiθ) · · · qs(pe2πiθ).

Therefore e2πiθ is a root of one of the polynomials qj (pX). Suppose that such polynomial is qj0(pX). Then,
qj0 (pX) is irreducible, its degree is bigger than 1 and has a root in the unit circle. But if an irredicuble
polynomial in Q [X] of degree bigger than 1 has a root in the unit circle, then the polynomial is palindromic
of even degree [10, Th. 1.1]. �
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Corollary 3.3. Let p be a prime, E = Q(ξp) and fn ∈ GB(p`)
n,Fp

a family of generalized p-ary functions.

Suppose that for some fixed tuple a the sequence {H(p`)
fn,Fp

(a)} satisfies a linear recurrence with characteristic

polynomial q(X) ∈ E[X]. Suppose that q(X) has a square-free irreducible factorization. Then, every root β
of q (X) satisfies |β| ≤ p.

Example 3.4. Consider the sequence {HRn,[2,3],F3
(0)}. In [8] it was showed that this sequence satisfies the

recurrence whose characteristic polynomial is given by

X6 − 3X4 − 9X3 + 9X + 18 =
(
X3 − 3

) (
X3 − 3X − 6

)
.

This polynomial has a unique root β with the highest modulus. This root satisfies |β| ≈ 2.355301397608,
which is less than or equal to 3, as predicted.

Example 3.5. Consider now the sequence {Hen,3,F5
(a)} where a = (1, 0, 2). This sequence satisfies the

recurrence whose characteristic polynomial is given by

m(X) =
(
X2 − 5

) (
X2 − 5X + 5

) (
X4 + 10X2 + 25X + 25

) (
X4 − 5X3 + 15X2 − 25X + 25

)
.

This polynomial is a proper divisor of

4∏
a1=0

a1∏
a2=0

a2∏
a3=0

a3∏
a4=0

(X − (1 + ξa15 + ξa25 + ξa35 + ξa45 )).

The highest modulus of the roots of m(X) occurs at varios roots and it is approximately equal to 3.618033989.
This value is less than or equal to 5, as predicted by our theorem.

One consequence of the above theorem is that if fn ∈ Bn,p is a family of p-ary functions such that for some
fixed tuple a the sequence {Hfn (a)}n satisfies a linear recurrence with integral coefficients in E = Q(ξ),
then the limit

(3.4) lim
n→∞

1

pn
∣∣Hfn,Fp (a)

∣∣
is 0 most of the time. Therefore, the idea presented in [4] about using the limit

(3.5) lim
n→∞

1

2n
S(en,k) = lim

n→∞

1

2n
Hen,k

(0),

to prove that when k is not a power of two the elementary symmetric Boolean polynomial en,k is not balanced
for n sufficiently big does not carry over very well for general p-ary functions. Some adjustments can be
made, but they depend on the particular characteristic polynomial of the sequence. For example, suppose
that q(X) is the characteristic polynomial associated to {Hfn (0)}n. Moreover, suppose that it is irreducible
on E = Q(ξp). Then,

Hfn (0) =
∑

α: q(α)=0

cα α
n

where cα is a non-zero constant for each α. If q(X) has root β such that |α| < β for α any other root different
than β, then the limit

lim
n→∞

1

|β|n
∣∣Hfn,Fp

(0)
∣∣ = |cβ | 6= 0

and therefore, the p-ary function fn is not balanced for all sufficiently large n. The same argument works
if the irreducibility of the characteristic polynomial q(X) is relaxed to having a square-free irreducible
factorization. The polynomial in Example 3.4 is an example of a polynomial with a squarefree fractorization
and with a unique root of maximum modulus. Therefore, Rn,[2,3] is not balanced over F3 for all sufficiently
large n.

Let us study the characteristic polynomial of {HRn,[2,3],F3(0)} in more detail. The characteristic polyno-
mial is given by

X6 − 3X4 − 9X3 + 9X + 18 =
(
X3 − 3

) (
X3 − 3X − 6

)
.
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Out of all its roots, the one with the biggest modulus is a root of the factor X3−3X−6. This factor belongs
to the following family of polynomials. Let p be a prime and q = p`. Define Qk,q(X) by

(3.6) Qk,q(X) = Xk − q
k−2∑
j=0

(q − 1)jXk−2−j .

Observe that Q3,3(X) = X3 − 3X − 6. The polynomial (3.6) appeared in the study of SFq
(Rn,[2,3,··· ,k]). In

particular, it is the characteristic polynomial of the minimal recurrence of SFq (Tn,[2,3,··· ,k]), where Tn,[2,3,··· ,k])
is the trapezoid function associated to the rotation Rn,[2,3,··· ,k]. Trapezoid functions are very interesting
objects and seems to have some special properties. For example, the function T4,[2] = X1X2 +X2X3 +X3X4

is known to be bent and negabent Boolean function [27].
The polynomial Qk,q(X) is very interesting. It has a unique positive real root and such root has the

biggest modulus among all its roots. That is a consequence of Ostrovsky’s Theorem.

Theorem 3.6 (Ostrovsky). Let f(X) = Xn− b1Xn−1− · · · − bn, where all the numbers bi are non-negative
and at least one of the them is nonzero. If the greatest common divisor of the indices of the positive integers
bi is equal to 1, then f has a unique positive root α and the absolute value of the other roots (they may be
complex) are less than α.

The polynomial Qk,q(X) also appears to be irreducible over Q for every k and q. If q = p, then the
polynomial Qk,p(X) is irreducible over Q by Eisenstein Criterion. However, in our study, we are interested
in irreducibility over E = Q(ξp). The irreducibiliy of Qk,p(X) over E is discussed next and it depends on
the Eisenstein-Dumas criterion.

Theorem 3.7 (Eisenstein-Dumas criterion). Let R be a unique factorization domain and

f(x) = a0 + a1X + · · ·+ anX
n ∈ R[X]

with a0an 6= 0. Assume that f(X) is primitive, i.e. gcd(a0, · · · , an) = 1. If the Newton polygon of f(X)
with respect to some prime p ∈ R consists of only the line segment from (0,m) to (n, 0) and gcd(n,m) = 1,
then f(X) is irreducible in R[X].

Theorem 3.8. Let p be a prime, k ≥ 2 an integer and E = Q(ξp). If gcd(p − 1, k) = 1, then Qk,p(X) is
irreducible over E.

Proof. The ring of integers of E is R = Z[ξp] (the ring R is a Dedekind domain). The ideal (1 − ξp) is a
prime ideal of Z[ξp] and (p) = (1− ξp)p−1, thus π = 1− ξp is a prime in Z[ξp] and p is totally ramified in E.

Let νπ denote the valuation corresponding to the ideal (π). Then, νπ(p) = νπ(p(p−1)j) = p−1. Therefore,
the Newton polygon of Qk,p(X) with respect to π consists of only the line segment from (0, p− 1) to (k, 0).
By hypothesis, gcd(p− 1, k) = 1. Therefore, the Eisenstein-Dumas criterion implies that f(X) is irreducible
in R[X] and therefore in E[X]. �

Combining the fact that Qk,p(X) has a unique positive root β and every other root of Qk,p(X) has
absolute value less than β with the fact that Qk,p(X) is irreducible over E when gcd(k, p − 1) = 1 implies
that Tn,[2,3,··· ,k] is not balanced over Fp for n sufficiently large when gcd(p − 1, k) = 1. We also have the
following result.

Theorem 3.9. Let p be an odd prime and k > 2 an integer such that gcd(k, p − 1) = 1. Then, for all
sufficiently large n, the p-ary trapezoid function Tn,[2,··· ,k] is not bent over Fp.

Proof. We know that Qk,p(X) is irreducible over E = Q(ξp), therefore, if β1, · · · , βk are the roots of Qk,p(X),
then

HTn,[2,··· ,k],Fp(0) =

k∑
j=1

cj(0)βjj

where each cj(0) 6= 0. Let β1 be the unique positive root of Qk,p(X) of Ostrovsky’s Theorem. Then |βj | < β1

for j = 2, · · · , k and so

(3.7) lim
n→∞

1

βn1

∣∣HTn,[2,··· ,k],Fp(0)
∣∣ = |c1(0)| 6= 0.
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Now observe that

Qk,p(
√
p) =

(p− 1)pk/2 − p(p− 1)k−1

p−√p− 1
.

Our hypothesis on p and k imply that this value is a negative number. Also observe that

Qk,p(p) = p(p− 1)k−1

is a positive number. Therefore, the unique positive root β1 satisfies β1 >
√
p. But then,∣∣HTn,[2,··· ,k],Fp

(0)
∣∣ 6= p

n
2 ,

for all n sufficiently large because otherwise it would imply

lim
n→∞

1

βn1

∣∣HTn,[2,··· ,k],Fp(0)
∣∣ = lim

n→∞

pn/2

βn1
= lim
n→∞

(√
p

β1

)n
= 0,

which contradicts (3.7). But a p-ary function fn ∈ Bn,p is bent if and only if∣∣Hfn,Fp
(a)
∣∣ = p

n
2

for all a ∈ Fnp . Therefore, we conclude that Tn,[2,··· ,k] is not bent over Fp. �

Computer experiments suggest that the polynomial Qk,p(X) appears as a factor of the characteristic
polynomial of the minimal linear recurrence with integer coefficients that {WRn,[2,3,··· ,k]

(a)} satisfy. We
have been unable to prove this, but if true, the argument provided in this work can be used to show that
Rn,[2,3,··· ,k] is not bent over Fp.

4. Concluding remarks

In this work we showed that Walsh transformations of generalized p-ary functions whose components are
symmetric, rotation symmetric or a linear combination or concatenation of them are C-finite sequences. This
generalizes the results presented in [8, 9] for regular p-ary functions to generalized ones. It would be nice to
see if some of these results work carry over to generalized q-ary functions when q is a power of a prime p.
This is part of future work.

We also showed that roots of characteristic polynomials associated to linear recurrences satisfied by Walsh
transformations of families of p-ary functions are bounded in absolute value by p. That results combined
with some analysis of these roots can be used to obtain information about the balancedness and non-linearity
of the p-ary functions. We hope and expect the expert reader to find applications of our results.
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[14] T. W. Cusick, Y. Li, and P. Stănică. Balanced Symmetric Functions over GF (p). IEEE Trans. Inf. Theory 5 (2008)

1304–1307.
[15] T. W. Cusick and P. Stănică. Fast evaluation, weights and nonlinearity of rotation symmetric functions. Discr. Math. 258

(2002) 289–301.
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