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Abstract. The sequence {xn} defined by xn = (n+xn−1)/(1−nxn−1),
with x1 = 1, appeared in the context of some arctangent sums. We
establish the fact that xn 6= 0 for n ≥ 4 and conjecture that xn is
not an integer for n ≥ 5. This conjecture is given a combinatorial
interpretation in terms of Stirling numbers via the elementary symmetric
functions. The problem features linkage with a well-known conjecture on
the existence of infinitely many primes 1 + n2, as well as our conjecture
that (1 + 12)(1 + 22) · · · (1 + n2) is not a square for n > 3. We present
an algorithm that verifies the latter for n ≤ 103200 .

1. Introduction

The evaluation of arctangent sums of the form

(1.1)

∞
∑

k=1

tan−1 h(k)

for a rational function h, appears in the literature from time to time. Through-
out the paper tan−1(·) is defined by its principal branch. In joint work with
G. Boros, the third author presented in [3] a systematic study of these sums.
There, the reader will find the elementary evaluation

(1.2)

∞
∑

k=1

tan−1 2

k2
=

3π

4
,

as well as the more advanced

(1.3)

∞
∑

k=1

2−k tan−1

(

sinh 2kx

sin 2kx

)

= tan−1

(

tanh x

tan x

)

.

As part of this study, the authors of [3] considered the sequence

(1.4) xn := tan
n
∑

k=1

tan−1 k, n ≥ 1.
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The addition formula for tanx yields the Ricatti-type equation

(1.5) xn =
xn−1 + n

1 − nxn−1
,

with the initial condition x1 = 1. We prove that 1 − nxn−1 6= 0 for n > 1,
so that xn is well defined. Naturally, xn ∈ Q and the first few values are

(1.6)

{

1, −3, 0, 4, − 9

19
,

105

73
, −308

331
,

36

43

}

.

Moreover, running (1.5) backwards, we find that x0 = 0. In this paper we
settle the conjecture proposed in [3] to the effect that xn 6= 0 for n ≥ 4.
This proof is based on the analysis of the 2-adic valuation of xn.

Definition 1.1. Given a prime p and an integer x 6= 0, write x = pmy,
with y not divisible by p. The exponent m is the p-adic valuation of x,
denoted by m = νp(x). This definition is extended to x = a/b ∈ Q via
νp(x) = νp(a) − νp(b). We leave the value νp(0) as undefined.

In Section 2 we provide an explicit expression for ν2(xn). This is used to
prove that xn 6= 0 for n 6= 4. The study of arithmetical properties of the
sequence {xn} lead us to propose:

Conjecture 1.2. For n ≥ 5, the value xn is not an integer.

During the process of developing tables of values for ln Γ(x+ iy), J. Todd
[16] declared a positive integer m to be reducible if there is an identity of
the form

(1.7) tan−1 m =
∑

fr tan−1 nr,

for some integers fr, nr. For example, 13 is reducible since

(1.8) tan−1 13 = 5 tan−1 1 − tan−1 2 − tan−1 4.

The reducibility of m was characterized in terms of arithmetical properties
of m.

Theorem 1.3. Let m ∈ N. Then m is reducible if and only if all prime
factors of 1+m2 occur among the prime factors of 1+k2 for 1 ≤ k ≤ m−1.

Theorem 1.4. Let m ∈ N. Then m is reducible if and only if the largest
prime factor of 1 + m2 is less than 2m.

The question of whether xn in (1.5) is an integer m corresponds to asking
for a reduction of m of a specific type: all fr must be +1 and the integers
nr must be the segment {1, 2, · · · , n}.

Some partial results for the resolution of Conjecture 1.2 are given in Sec-
tion 4. We prove that the sequence {xn : n ≥ 5} does not contain two
consecutive elements which are integers. In this section we also explore
arithmetical conditions on the element xn−1, written in irreducible form as
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u/v, in order to obtain xn ∈ Z. Proposition 4.3 shows that xn ∈ Z is equiv-
alent to v − nu dividing 1 + n2. In particular, we show that if |xn| ≤ n and
1 + n2 is prime, then xn 6∈ Z. Note that the existence of infinitely many
primes of the form 1 + n2 is a well-known open problem in Number Theory.
Denote by P the set of prime numbers and introduce

(1.9) π2(n) := #{1 ≤ k ≤ n : 1 + k2 ∈ P}.
It is conjectured that

(1.10) π2(n) ∼ 2Cquad

√
n

ln n
,

where

(1.11) Cquad =
1

2

∏

p≥2

(

1 − (−1)(p−1)/2

p − 1

)

.

The expression

(1.12) Cquad =
3ζ(6)

4Gζ(3)

∏

p≡1 mod 4

(

1 +
2

p3 − 1

)(

1 − 2

p(p − 1)2

)

gives an expression for Cquad in terms of primes congruent to 1 modulo 4.
This is a result of D. Shanks [15]. Here G is the Catalan constant

(1.13) G =

∞
∑

k=0

(−1)k

(2k + 1)2
.

Theorem 7.10 shows that the condition |xn| ≤ n is valid almost all the
time. Thus, for almost all primes of the form 1+n2, we conclude that xn 6∈ Z.

Section 3 describes a relation between the sequence {xn : n ∈ N} and the
alternating sums S±(n) (see definitions in Section 3) of Newton‘s elementary
symmetric functions,

(1.14) Sk(n) =
∑

1≤i1<···<ik≤n

i1 · · · ik, 1 ≤ k ≤ n,

of the numbers {1, 2, · · · , n}. Theorem 3.6 states that

(1.15) xn =
S−(n)

S+(n)
.

This section also contains explicit analytic expressions for the 2-adic valua-
tions of S±(n). In particular it is shown that ν2(S±(n)) ≥ ⌊n+1

4 ⌋.

The point in Z2 given by

(1.16) ρ(n) := (S+(n), S−(n)),
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has an angle equal to

(1.17) tan−1 xn =

n
∑

k=1

tan−1 k.

The square of the modulus is given by

(1.18) ωn := |ρ(n)|2 = (1 + 12)(1 + 22)(1 + 32) · · · (1 + n2).

We also consider a diophantine equation related to ωn. In the literature, the
solution to

(1.19) 12 + 22 + · · · + n2 = m2

is known as Lucas’s square pyramid problem. The only solutions are (n,m) ∈
{(1, 1) (24, 70)}. See [1] and [4] for details. Write

(1.20) Rn(t) = (1 + t2)(1 + 4t2)(1 + 9t2) · · · (1 + n2t2),

then Lucas’ problem amounts to asking whether the coefficient of t2 in Rn(t)
is itself a square.

It is natural that one should investigate the remaining coefficients of Rn,
to check whether these are perfect squares. The problem discussed in the
present article deals with ωn = Rn(1) which is the total sum of the coeffi-
cients of Rn(t). Based on extensive numerical evidence, we propose that

Conjecture 1.5. For n ≥ 4, the value ωn is not a square.

The two conjectures presented above are related. Theorem 5.5 shows that
failure of Conjecture 1.5 implies Conjecture 1.2. In Section 5, we consider the
product ωn modulo certain primes. This is used to establish Conjecture 1.5
for n in certain arithmetical progressions, for example, for n ≡ 1 mod 3. We
also describe a sieve that is used to verify this conjecture up to n ≤ 103200,
in an efficient way. The algorithm is based on the simple observation that,
if there is a prime p for which νp(ωn) is an odd number, then ωn is not a
square.

Section 6 explores the p-adic properties of ωn. An explicit 2-adic valuation
produces a proof of Conjecture 1.5 for n ≡ 1, 2 mod 4. This section also
discusses the case p odd. Theorem 6.5 states that

(1.21) νp(ωn) ∼ 2n

p − 1
, as n → ∞.

The proof of Theorem 6.5 makes use of the solutions to the congruence

(1.22) 1 + x2 ≡ 0 mod pi.

In the base case i = 1, the congruence 1 + x2 ≡ 0 mod p has two solutions
αp ≤ α∗

p in the interval 1 ≤ x ≤ p − 1. The first root αp satisfies

(1.23)
√

p − 1 ≤ αp ≤ (p − 1)/2.

These two roots produce solutions to the congruences modulo pi. For exam-
ple, for modulus p2, we have that 1 + x2 ≡ 0 mod p2. Therefore, x = α + tp
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for some t ∈ {0, 1, · · · , p − 1} (or x = α∗ + tp). The bounds on αp shows
that 1 + α2

p = pb1, with b1 6≡ 0 mod p. The congruence 1 + x2 ≡ 0 mod p2

yields 2αpt ≡ −b1 mod p and t is uniquely determined, say t = t1. We let

(1.24) αp2 := αp + t1p.

This argument produces a double sequence of numbers

(1.25) αp, αp2, αp3, · · · and α∗
p, α∗

p2 , α∗
p3 , · · ·

such that

(1.26) 1 + x2 ≡ 0 mod pi if and only if x ≡ αpi or x ≡ α∗
pi mod pi.

The construction shows that

(1.27) αpi ≡ αpi−1 mod pi−1.

Section 5 presents a connection between Conjecture 1.5 and primes of the
form 1+x2. We show that the existence of an integer x in the range [

√
n, n],

such that 1 + x2 is a prime, implies Conjecture 1.5.

The question of whether xn is an integer suggests the study of the sequence
of fractional parts defined by

yn := {xn} = xn − ⌊xn⌋.

Figure 1 shows the sequence {xn} for 1 ≤ n ≤ 100000, and Figure 2
shows the corresponding fractional parts. Observe the presence of granular
regions combined with some solid curve regions. This combination persists
as n increases.

n

x@nD

Figure 1. The sequence xn
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n

y@nD

Figure 2. The fractional part of xn

n

y@2nD

Figure 3. The fractional part of the sequence x2n

The sequence {yn} has many interesting dynamical properties. For in-
stance, we point out the lack of intrusion between the curves and the gran-
ular region observed in Figure 3. These phenomena will be considered in
future work.

The last section contains miscellaneous topics and future directions in-
spired by the results presented in this paper.

2. The 2-adic valuations of xn

Let m ∈ Z and p a prime number. This section begins the discussion of
the properties of the p-adic valuation of xn, defined in (1.1). The explicit
evaluation of ν2(xn) is used to establish that xn 6= 0 for n ≥ 4 by showing
that ν2(xn) is well defined.

Theorem 2.1. Let n ≥ 4. Then xn 6= 0.

The proof of the theorem is based on the following result.
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Theorem 2.2. Let n ∈ N and N = ⌊n
4 ⌋. The 2-adic valuation of xn is

given by

ν2(xn) =

{

ν2(2N(N + 1)) if n ≡ 0, 3 mod 4,

0 if n ≡ 1, 2 mod 4.

The demonstration of this proposition is divided into several steps.

An elementary inductive argument, using (1.5) in the form

(2.1) xn+1 =
xn + n + 1

1 − (n + 1)xn
,

gives the first result.

Lemma 2.3. Let n, k ∈ N. There exist polynomials Pk and Qk for which

(2.2) xn+k =
Pk(n)xn + Qk(n)

Pk(n) − Qk(n)xn
.

The polynomials Pk, Qk satisfy the recurrences

Pk+1(n) = Pk(n) − (n + k + 1)Qk(n),(2.3)

Qk+1(n) = Qk(n) + (n + k + 1)Pk(n),

with initial conditions P1(n) = 1 and Q1(n) = n + 1.

We now establish Theorem 2.2 for the case n ≡ 0 mod 4.

Proposition 2.4. Let n ∈ N. Then ν2(x4n) = ν2(2n(n + 1)).

Proof. The proof is divided into cases according to the value of ν2(n). Write

n = 2ν2(n)t, with t odd.

Case 1: ν2(n) = 1. We write t = 2m + 1 and we need to prove

(2.4) ν2(x16m+8) = 2.

The proof is by induction starting at

(2.5) ν2(x8) = ν2

(

−36
43

)

= 2.

To continue the inductive procedure we need a relation between x16(m+1)+8

and x16m+8.

Claim: there are odd integers c1, c2 such that

(2.6) x16(m+1)+8 =
8c1 + c2x16m+8

c2 − 8c1x16m+8
.

Lemma 2.3 gives

(2.7) x16(m+1)+8 =
P16(16m + 8)x16m+8 + Q16(16m + 8)

P16(16m + 8) − Q16(16m + 8)x16m+8
,
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and the representation (2.6) comes from a direct symbolic calculation:

P16(16m + 8) = 16 mod 32,

Q16(16m + 8) = 128 mod 256.

From (2.6) we obtain

ν2(x16(m+1)+8) = ν2

(

8c1 + c2x16m+8

c2 − 8c1x16m+8

)

= ν2

(

4 · 2c1 + c2
1
4x16m+8

c2 − 8c1x16m+8

)

and, using the inductive hypothesis ν2(
1
4x16m+8) = 0, we conclude the proof

of Case 1.

Case 2 ν2(n) = 0, or ν2(n) > 1. The claim to be proven is

(2.8) ν2(x4n) = ν2(2n(n + 1)),

where n = 2ν2(n)t with t odd. Proceed by induction.

Claim: there are odd integers α1, α2 such that

(2.9) x4n+4 =
α2x4n + 4(n + 1)α1

α2 − 4(n + 1)α1x4n
.

This representation comes from Lemma 2.3 in the form

(2.10) x4n+4 =
P4(4n)x4n + Q4(4n)

P4(4n) − Q4(4n)x4n
,

and the observation that P4(4n) = 2 mod 4, and Q4(4n) = 8 mod 16.

We now consider the 2-adic valuation of (2.9). First of all,

(2.11) ν2(α2 − 4(n + 1)α1x4n) = 0,

so that

(2.12) ν2(x4n+4) = ν2(4(n + 1)α1 + α2x4n).

We now prove by induction that

(2.13) ν2(x4n+4) = ν2(2(n + 1)(n + 2)).

Start with

ν2

(

x4n+4

2(n + 1)(n + 2)

)

= ν2

(

2α1

n + 2
+

α2x4n

2(n + 1)(n + 2)

)

= ν2

(

α1 +
n

n + 2
(−α1 + µα2)

)

,(2.14)

with

(2.15) µ =
x4n

2n(n + 1)
.
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The inductive hypothesis states that µ is odd. Therefore, ν2(α2µ−α1) ≥ 1.

From n = 2ν2(n)t, we see that if ν2(n) = 0 then n is odd and the term in
(2.14) is zero. On the other hand, if ν2 > 1, then

(2.16) ν2

(

n

n + 2

)

= ν2

(

2ν2(n)−1t

2ν2(n)−1t + 1

)

= ν2(n) − 1 > 0,

and the term in (2.14) vanishes again. For either case, the proof of Propo-
sition 2.4 is complete. �

The next step is to establish the result in Theorem 2.2 for the case n ≡
3 mod 4.

Proposition 2.5. Let n ∈ N. Then ν2(x4n+3) = ν2(2n(n + 1)).

Proof. We have the representation

(2.17) x4n+3 =
a1 + a2x4n

a2 − a1x4n
,

with a1 even and a2 odd. Indeed, Lemma 2.3 yields

(2.18) x4n+3 =
P3(4n)x4n + Q3(4n)

P3(4n) − Q3(4n)x4n
,

and an explicit evaluation of P3(4n) and Q3(4n) produces (2.17) with

(2.19) a1 = 16n(n + 1)(2n + 1) and a2 = 24n2 + 24n + 5.

From Proposition 2.4, we obtain that ν2(x4n) = ν2(2n(n + 1)) ≥ 2, so that
ν2(a2 − a1x4n) = 0. We conclude that ν2(x4n+3) = ν2(a1 + a2x4n). Now
observe that

ν2

(

x4n+3

2n(n + 1)

)

= ν2

(

a1

2n(n + 1)
+ a2 ·

x4n

2n(n + 1)

)

= ν2

(

8(2n + 1) + a2 ·
x4n

2n(n + 1)

)

= 0,

because a2 and x4n

2n(n+1) are odd. The proof of Proposition 2.5 is complete.

�

We continue with the proof of Theorem 2.2 for the remaining cases n ≡
1, 2 mod 4.

Proposition 2.6. Let n ∈ N and assume n ≡ 1, 2 mod 4. Then ν2(xn) = 0.

Proof. Let m = n − 2, so that m ≡ 3, 0 mod 4. Lemma 2.3 gives

xm+2 =
P2(m + 1)xm + Q2(m + 1)

P2(m + 1) − Q2(m + 1)xm
(2.20)

=
(m + 1)(m + 2)xm − xm − (2m + 3)

(2m + 3)xm + (m + 1)(m + 2) − 1
.

From Propositions 2.4 and 2.5 we have that xm is even. Then (2.20) shows
that xn is odd, as claimed. �
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The proof of Theorem 2.2 is complete. In particular, the expression for
ν2(xn) is well defined, showing that xn 6= 0.

Corollary 2.7. For any n ∈ N, the value ν2(xn) is well defined and the
element xn is finite. Moreover, xn 6= −(n + 1), 1/(n + 1).

Section 7.4 contains information about the p-adic valuation of xn.

3. A representation by symmetric functions

In this section we consider the elementary symmetric functions of the
symbols

(3.1) An := {λ1, λ2, · · · , λn },
defined by

(3.2) Sk(An) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik , 1 ≤ k ≤ n.

As usual S0(An) = 1. The sequence {xn} is now expressed in terms of these
symmetric functions for a specific choice of the symbols {λi}.

Definition 3.1. The even and odd components of the symmetric function
An are, respectively,

(3.3) S+(An) :=
∑

k≥0

(−1)kS2k(An), and S−(An) :=
∑

k≥0

(−1)kS2k+1(An).

The next few properties are elementary.

Proposition 3.2. The generating function of the symmetric functions Sk

is given by

(3.4) Gn(z) =
n
∏

j=1

(1 + zλj) =
n
∑

k=0

Sk(An)zk.

Moreover, the functions Sk satisfy the recurrence relation

(3.5) Sk+1(An+1) = Sk+1(An) + λn+1Sk(An).

The following result follows directly from (3.5).

Corollary 3.3. For n ∈ N, we have

λn+1S+(An) = S−(An+1) − S−(An),(3.6)

−λn+1S−(An) = S+(An+1) − S+(An),

λnS+(An+1) = (λn + λn+1)S+(An) − λn+1(λ
2
n + 1)S+(An−1),

λnS−(An+1) = (λn + λn+1)S−(An) − λn+1(λ
2
n + 1)S−(An−1).
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Corollary 3.4. Assume λj 6= 0 and define A∗
n = {λ−1

1 , λ−1
2 , · · · , λ−1

n } and

(3.7) Λn :=
n
∏

j=1

λj.

Then the parity-dependent identities

S+(A2n) = (−1)nΛnS+(A∗
2n),(3.8)

S−(A2n) = (−1)n−1ΛnS−(A∗
2n),

S+(A2n+1) = (−1)nΛnS−(A∗
2n+1),

S−(A2n+1) = (−1)nΛnS+(A∗
2n+1).

hold. It follows that

S−(A2n)

S+(A2n)
= −S−(A∗

2n)

S+(A∗
2n)

,
S−(A2n+1)

S+(A2n+1)
=

S+(A∗
2n+1)

S−(A∗
2n+1)

.

The functions S+ and S− in (3.3) can be given a matrix formulation:

Lemma 3.5. The functions S+ and S− satisfy

(3.9)

(

S+(An) −S−(An)
S−(An) S+(An)

)

=

n
∏

j=1

(

1 −λj

λj 1

)

Choose the symbols λk = k for 1 ≤ k ≤ n, and for simplicity write Sk(n)
instead of Sk(An).

Theorem 3.6. Assume n ≥ 0. Then

(3.10) xn =
S−(n)

S+(n)

where

(3.11) S−(n) =

⌊(n−1)/2⌋
∑

k=0

(−1)kS2k+1(n), and S+(n) =

⌊n/2⌋
∑

k=0

(−1)kS2k(n),

are the odd and even parts of {Sk(n) } respectively.

Proof. The result is established by induction. Corollary 3.3, the recurrence
(1.5), and the induction hypothesis yield

xn+1 =
xn + (n + 1)

1 − (n + 1)xn

=
S−(n) + (n + 1)S+(n)

S+(n) − (n + 1)S−(n)
.

This proves the assertion. �

In this case Corollary 3.3 becomes:
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Corollary 3.7. Let n ∈ N. Then

nS+(n − 1) = S−(n) − S−(n − 1)

−nS−(n − 1) = S+(n) − S+(n − 1).

Moreover

(3.12) nS±(n + 1) = (2n + 1)S±(n) − (n + 1)(n2 + 1)S±(n − 1).

The value of the 2-adic valuations of S+ and S− are described next.

Theorem 3.8. The even partial sequences satisfy

(3.13) ν2(S+(n)) = ⌊n+1
4 ⌋,

and the odd components satisfy

(3.14) ν2(S−(n)) =

{

⌊n+1
4 ⌋ if n ≡ 1, 2 mod 4,

⌊n+1
4 ⌋ + ν2

(

2⌊n
4 ⌋(⌊n

4 + 1⌋)
)

if n ≡ 0, 3 mod 4.

In particular, ν2(S+(n)) and ν2(S−(n)) are bounded from below by ⌊n+1
4 ⌋.

Proof. The second identity in Corollary 3.3 gives

(3.15) (n + 1)S+(n) = S−(n + 1) − S−(n),

and (3.10) yields

(3.16) (xn + n + 1)S+(n) = xn+1S+(n + 1).

This identity is now used to show that

(3.17) ν2(S+(4m−1)) = ν2(S+(4m)) = ν2(S+(4m+1)) = ν2(S+(4m+2)).

First let n = 4m in (3.16) to produce

(3.18) (x4m + 4m + 1)S+(4m) = x4m+1S+(4m + 1).

Theorem 2.2 shows that x4m is even and x4m+1 is odd, therefore

(3.19) ν2(S+(4m)) = ν2(S+(4m + 1)).

Then put n = 4m + 1 in (3.16) to obtain

(3.20) (x4m+1 + 4m + 2)S+(4m + 1) = x4m+2S+(4m + 2).

Theorem 2.2 shows that x4m+1 and x4m+2 are odd, so that

(3.21) ν2(S+(4m + 1)) = ν2(S+(4m + 2)).

The final step in the proof of (3.17) comes from the second formula in Corol-
lary 3.3 and (3.10) which yields

(3.22) S+(n + 1) = (1 − (n + 1)xn)S+(n).

Now replace n = 4m − 1 to obtain

(3.23) S+(4m) = (1 − 4m · x4m−1)S+(4m − 1).

This implies ν2(S+(4m)) = ν2(S+(4m − 1)).
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The evaluation

(3.24) ν2(S+(4m)) = m,

is now established by induction. The periodicity of ν2(S+) then produces
(3.13). The value S+(1) = −10 gives ν2(S+(1)) = 1 and (3.17) shows that
(3.24) is correct for m = 1. The inductive step is achieved by putting
n = 4m + 2 in (3.22) to obtain

(3.25) S+(4m + 3) = (1 − (4m + 3)x4m+2)S+(4m + 2).

Assume for the moment that

(3.26) ν2(1 − (4m + 3)x4m+2) = 1,

and use (3.25) to obtain

(3.27) ν2(S+(4m + 3)) = 1 + ν2(S+(4m + 2)).

The induction hypothesis and (3.17) complete the proof of (3.24).
To prove (3.26) use (2.20) with n = 4m to obtain

(3.28) x4m+2 =
(4m + 1)(4m + 2)x4m − x4m − (8m + 3)

(8m + 3)x4m + (4m + 1)(4m + 2) − 1
.

This can be expressed as

(3.29) [(8m + 3)x4m + tm][1 − (4m + 3)x4m+2] = 2[um − vmx4m],

with um = 24m2 + 24m + 5, vm = 16m(1 + m)(2m + 1) and tm = 2(4m +
1)(2m+1)−1. Thus um and tm are odd and vm is even. Theorem 2.2 shows
that x4m is even, so the 2-adic valuation of the right hand side of (3.29) is
1. On the left hand side of (3.29), the first term is odd, so (3.26) must hold.
The proof of (3.13) is complete. The expression (3.14) follows directly from
(3.10). �

4. Conditions for integrality of the sequence {xn}
The next goal of this paper is to examine the possibility that xn is

an integer for n ≥ 5. Recall that the first terms of this sequence are
{0, 1, −3, 0, 4, −9/19 }.
Theorem 4.1. Let n > 4. Then, xn−1 and xn cannot both be integers.

Proof. Assume

(4.1) xn =
n + xn−1

1 − nxn−1
,

and that xn−1, xn ∈ Z. Then |xn| ≥ 1 because it has been established that
xn 6= 0 for n 6= 3. Therefore

(4.2) |n + xn−1| ≥ |1 − nxn−1|.
The discussion of this inequality is divided into four cases according to the
sign of the expressions in (4.2).
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Case 1: n + xn−1 ≥ 0 and 1 − nxn−1 ≥ 0. This is equivalent to −n ≤
xn−1 ≤ 1

n . The fact that xn−1 6= 0 produces −n ≤ xn−1 ≤ −1. In this case
(4.2) becomes (1+n)xn−1 ≥ 1−n. Let tn−1 = −xn−1, so that 1 ≤ tn−1 ≤ n.
Then (1 + n)tn−1 ≤ n − 1 and this contradicts tn−1 ≥ 1.

Case 2: n + xn−1 ≥ 0 and 1 − nxn−1 ≤ 0. This is equivalent to xn−1 ≥ 0.
Then (4.2) becomes n + xn−1 ≥ nxn−1 − 1, that yields xn−1 ≤ n+1

n−1 . For
n > 3, this implies xn−1 < 2, that is, xn−1 = 1. Thus,

(4.3) xn =
n + 1

1 − n
,

and it follows that xn < 0. Moreover, for n > 3,

(4.4) xn = −n + 1

n − 1
> −2.

This shows that xn = −1, contradicting (4.3).

Case 3: n + xn−1 ≤ 0 and 1−nxn−1 ≥ 0. This is equivalent to xn−1 ≤ −n.
In this case (4.2) becomes

(4.5) −n − xn−1 ≥ 1 − nxn−1,

that is equivalent to

(4.6) xn−1 ≥ n + 1

n − 1
.

This contradicts the fact that xn−1 ≤ −n.

Case 4: n + xn−1 ≤ 0 and 1− nxn−1 ≤ 0. This is equivalent to xn−1 ≤ −n
and xn−1 ≥ 1/n. This situation does not occur. �

The more general question of whether it is possible to have integers a, b
and c such that

(4.7)
a + b

1 − ab
= c,

is considered next. All integer solutions to (4.7) are determined. The authors
wish to thank B. Scher for suggesting this result.

Theorem 4.2. The values (1, 2,−3) and (0, b, b), with b ∈ Z are solutions
to (4.7). All other integer solutions are obtained from these by using the fact
that, if (a, b, c) solves (4.7), then so do (−a,−b,−c), (a,−c,−b), (c, a,−b)
and (b,−c,−a).

Proof. There are no solutions with |a|, |b|, |c| ≥ 2. Indeed, it follows that

(4.8) |a| + |b| ≥ |a + b| ≥ 2|1 − ab| ≥ 2(|ab| − 1),

and this implies that 2|a||b| − 2 ≤ |a| + |b|. Thus, |a| + 2 ≥ (2|a| − 1)|b| ≥
4|a| − 2, that is, 3|a| ≤ 4. This is a contradiction.
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The solutions (0, b, b), (a, 0, a), (a,−a, 0) correspond to the trivial case in
which one of the variables vanishes. The case a = 1 yields

(4.9) c =
1 + b

1 − b
= −1 − 2

b − 1
,

and it follows that b − 1 = ±1, ±2. This produces the solutions

(4.10) (1, 0, 1), (1, 2,−3), (1,−1, 0), (1, 3,−2).

A similar analysis can be made with a = −1 and also |b| = 1 and |c| = 1.
The statement about the new solutions admits a direct verification. �

Assumption. Let n ≥ 5 be an index for which xn ∈ Z. Write

(4.11) xn−1 =
u

v
with gcd(u, v) = 1.

We now explore some arithmetical properties of xn−1 ∈ Q.

Proposition 4.3. Let n ≥ 5. Then xn ∈ Z if and only if v − nu divides
1 + n2.

Proof. The result follows from gcd(v−nu, u) = 1 and xn = n+u(1+n2)/(v−
nu). �

Lemma 4.4. Assume xn ∈ Z and define c := gcd(xn − n, 1 + nxn). Then c
divides 1 + n2.

Proof. The recurrence for xn yields

(4.12)
u

v
=

xn − n

1 + nxn
.

Therefore xn − n = cu and 1 + nxn = cv. The relation 1 + n2 = c(v − nu)
and Proposition 4.3 show that c must divide 1 + n2. �

Theorem 4.5. Let n ≥ 5. Assume |xn| ≤ n and that 1+n2 is prime. Then
xn 6∈ Z.

Proof. Suppose xn = m ∈ Z. Then (3.10) gives mS+(n) = S−(n). Corollary
3.7 yields

(4.13) (m − n)S+(n − 1) = (1 + mn)S−(n − 1).

The identity 1+n2 = (1+mn)−n(m−n), shows that c = gcd(m−n, 1+mn)
divides 1+n2. Similarly c divides 1+m2. It follows that c = 1 or c = 1+n2.
In the latter case, m = n, since |m| ≤ n. This yields S−(n − 1) = 0.
Therefore xn−1 = 0 and this is a contradiction. Therefore c = 1. The
relation (4.13) now gives

(4.14) S+(n − 1) = 1 + mn, and S−(n − 1) = m − n.

Theorem 3.8 shows that 2 divides S+(n − 1) and S−(n − 1), contradicting
c = 1. �
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Note. The hypothesis |xn| ≤ n in the above theorem holds for almost every
n ∈ N. Theorem 7.10 actually gives a sharper bound |xn| ≤ ⌊n

2 ⌋ + 1.

Corollary 4.6. Let m ∈ Z and n ∈ N. Assume gcd(m − n, 1 + mn) = 1.
Then xn 6= m.

5. A related diophantine equation

The sequence

(5.1) ωn := (1 + 12)(1 + 22)(1 + 32) · · · (1 + n2),

that appeared as the modulus of the point η(n) = (S+(n), S−(n)), is studied
in this section. Numerical calculations suggest that ωn is never a square.
This is the content of Conjecture 1.5:

The diophantine equation ωn = m2 has no solutions for n 6= 3.

The arithmetical properties of ωn investigated in this section deal with ωn

modulo a prime p. Every prime divisor of ωn must satisfy p ≡ 1 mod 4, so we
consider here p ≡ 3 mod 4. The next section deals with primes p ≡ 1 mod 4.

Observe first that the simpler question, whether

(5.2) (n + 1)! = (1 + 1)(1 + 2)(1 + 3)(1 + 4) · · · (1 + n),

is a square, can be answered in the negative. This is the natural analog
of Conjecture 1.5 with an immediate generalization to odd exponents. See
Proposition 5.1.

Note. The equation

(5.3) n! + k = m2

was considered by H. Brocard [5, 6] and then, unaware of its history, it was
discussed by S. Ramanujan [14], page 327. B. Berndt and W. Galway [2]
reported on the equation

(5.4)

(

n! + 1

p

)

= 0 or 1, where p is a prime.

The only solutions of (5.3) or (5.4) are n = 4, 5, 7. Here
(

a
p

)

is the Legendre

symbol, defined in (5.14).

Proposition 5.1. The diophantine equation

(5.5) Ωµ(n) := (1 + 1µ)(1 + 2µ) · · · (1 + nµ) = m2

has no solutions for n ≥ 2 and µ odd.
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Proof. Start with the factorization

(5.6) Ωµ(n) =

n
∏

j=1

(1 + j) × 1 + jµ

1 + j
.

The case n = 2, 3 are checked directly. For n ≥ 4, Bertrand’s postulate [13]
gives the existence of a prime p in the range ⌊n/2⌋ < p < 2⌊n/2⌋. This
yields p < n and 2p ≥ n + 1, so that p2 does not divide (n + 1)!. Thus,
νp((n+1)!) = 1. This prime cannot divide the term involving the cyclotomic
polynomial (1 + jµ)/(1 + j). Therefore Ωµ(n) cannot be a square. �

In sharp contrast to Proposition 5.1, it seems that the problem is more
resilient when µ is even. The results described below offer some evidence
towards the validity of Conjecture 1.5, when µ = 2.

The symmetric functions S+ and S− defined in (3.11) are analyzed next.
The first result follows directly from the definitions of Gn in (3.4).

Lemma 5.2. Let n ∈ N. Then

(5.7) Gn(i) = S+(An) + iS−(An).

The modulus of (5.7) gives the Pythagorean relation

(5.8)

n
∏

j=1

(1 + λ2
j ) = S2

+(An) + S2
−(An),

This, in fact, can be considered as a generalization to Euler’s product for
sums of two squares:

2
∏

j=1

(1 + λ2
j) = (1 + λ1λ2)

2 + (λ1 − λ2)
2.

Writing λ1 = a/b and λ2 = c/d gives the classical form

(5.9) (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2.

This identity proves that products of numbers representable as sums of two
squares are also representable.

The special case λj = j produces

(5.10) Gn(i) = S+(n) + iS−(n),

and the modulus of this relation yields

(5.11) ωn = S+(n)2 + S−(n)2.

The following statement is an elementary consequence of the representa-
tion (3.10).
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Proposition 5.3. Assume that for n ≥ 5, the term xn is an integer m.
Then

(5.12) ωn =
n
∏

j=1

(1 + j2) = (1 + m2)S2
+(n).

Proof. Immediate from (3.10) and (5.11). �

Corollary 5.4. If n ≡ 0, 3 mod 4, then m is even, if n ≡ 1, 2 mod 4, then
m is odd.

Proposition 5.3 implies that, if xn = m for some m ∈ Z, then

(5.13) Yn,m := (1 + m2)ωn,

is a perfect square. This cannot be excluded on general grounds: there are
examples for which this happens, for instance,

(1 + 212)ω5 = (1 + 212)(1 + 12)(1 + 22)(1 + 32)(1 + 42)(1 + 52) = 44202.

The authors wish to thank James McLaughlin for this example.

The next result gives a sufficient condition for xn 6∈ Z.

Theorem 5.5. Assume that for n ≥ 5, the term ωn is a square. Then xn

is not an integer.

Proof. Proposition 5.3 implies that Yn,m = (1 + m2)ωn is a square. If ωn is
also a square, then so is 1 + m2. This is impossible. �

Note. Interestingly enough, the hypothesis in Theorem 5.5 never holds and
this has become the content of Conjecture 1.2, instead. The remainder of
the section explores the impossibility that ωn is a square.

Modular properties. The term ωn is now considered modulo a fixed prime
p. This is used to establish that ωn is not a square for a specific class of
indices n. To illustrate the idea, take for example the case p = 3. In this
case,

ωn =

{

1 n ≡ 0, 2 mod 3,

2 n ≡ 1 mod 3.

This can be seen by writing n = 3t + j, with 1 ≤ j ≤ 3, and observing that

ωn =

t
∏

k=1

(1 + k2)(1 + (k + 1)2)(1 + (k + 2)2) ×
3t+j
∏

k=3t+1

(1 + k2).

The first factor is congruent to 1 modulo 3 and the result follows by consid-
ering the three cases for j. Therefore,

Corollary 5.6. Assume n ≡ 1 mod 3. Then ωn is not a square.

Corollary 5.10 gives a full generalization of Corollary 5.6. In preparation,
the sequence ωn is analyzed modulo p.
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Theorem 5.7. Let p ≡ 3 mod 4 be a prime. Then the sequence

ωp,n := ωn mod p,

is cyclic of period at most p(p−1)
2 .

Proof. Since p ≡ 3 mod 4, the equation 1 + j2 ≡ 0 mod p has no solution.
On the other hand, for 1 ≤ j ≤ p, the terms 1+j2 mod p are symmetric with
respect to p, that is, 1 + j2 ≡ a mod p if and only if 1 + (p− j)2 ≡ a mod p.
Therefore,

p(p−1)/2
∏

j=1

(1 + j2) ≡





p
∏

j=1

1 + j2





(p−1)/2

mod p ≡





p−1
∏

j=1

1 + j2





(p−1)/2

mod p

≡





(p−1)/2
∏

j=1

(1 + j2)2





(p−1)/2

mod p

≡
(p−1)/2
∏

j=1

(1 + j2)p−1 mod p

≡ 1,

using Fermat’s little theorem. Hence, the periodicity of ωn modulo p is
established. The period is (at most)

(

p
2

)

. �

Definition 5.8. The Legendre symbol is defined by

(5.14)
(a

b

)

:=











1 if a is a quadratic residue mod b,

−1 if a is not a quadratic residue mod b,

0 if gcd(a, b) > 1.

For a prime p ≡ 3 mod 4, define

(5.15) ω∗
n,p :=

(

ωn

p

)

=

n
∏

j=1

(

1 + j2

p

)

.

Observe that 1 + j2 6≡ 0 mod p, so ω∗
n,p 6= 0.

Theorem 5.9. Let p be a prime congruent to 3 modulo 4. The function
ω∗

p,n is cyclic of period p. Moreover, in the list

(5.16) Lp :=

{(

1 + j2

p

)

: 1 ≤ j ≤ p

}

,

the number of −1 exceeds the number of +1 by 1.

Proof. The periodicity follows from that of the Legendre symbol. The sets

(5.17) A :=
{

(x, y) ∈ Zp × Zp : 0 ≤ x, y ≤ p − 1 and 1 + x2 = y2
}

,
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and

(5.18) B := {(u, v) ∈ Zp × Zp : 0 ≤ u, v ≤ p − 1 and uv = 1 } ,

have the same number of elements. Indeed, the map (u, v) = (y − x, y + x)
establishes a bijection from A to B and B has p − 1 elements because

B = {(u, u−1) with 1 ≤ u ≤ p − 1}.
In the set A, the value y = 0 is excluded because 1 + x2 ≡ 0 mod p has

no solutions. On the lattice [0, p − 1] × [0, p − 1] ⊂ Zp × Zp, mark the p − 1
elements of the set A with a star. Every horizontal line (y fixed) contains

either 0 or 2 stars. Thus, there must be p−1
2 horizontal lines with points

of A, and each one produces two stars. But the lines corresponding to +y
and −y produce the same pair, thus there are p−1

2 marked stars. These are

precisely those for which the Legendre symbol of 1 + x2 is +1. We conclude
that the list Lp contains p−1

2 values +1 and p − p−1
2 = p+1

2 values −1. �

Note. Fix a prime p ≡ 3 mod 4 and introduce the notation

(5.19) ξp
j :=

(

1 + j2

p

)

.

Consider the sequence of partial products

(5.20) πp
k :=

k
∏

j=0

ξp
j , k = 0, 1, 2, · · · .

The periodicity of the Legendre symbol shows that the sequence {πp
k : k ≥ 0}

is also of period p. Moreover,

(5.21) πp
0 = 1 and πp

p−1 = 1,

given that there are an even number (= p+1
2 ) of minus ones in the list Lp.

The next result can be employed to show that ωn is not a square along
certain arithmetic progressions.

Corollary 5.10. Let p ≡ 3 mod 4 and assume πp
k = −1. Then ωn is not a

square for n ≡ k mod p.

Definition 5.11. A valid configuration is a sequence of +1 and −1 of length
p, with p+1

2 repetitions of −1 and p−1
2 of +1. It is also required that the

sequence starts and end with +1.

Theorem 5.12. The minimum number of −1 in the sequence

(5.22) Πp := {ξp
k : 0 ≤ k ≤ p − 1}

is p+1
4 . The maximum number is 3p−1

4 .
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Proof. The minimum number is achieved when all the p+1
2 occurrences of

−1 are at the right and this number is p+1
4 . To prove this take a valid

configuration and assume that it has a block of interior +1:

(5.23) +1, ξp
2 , ξp

3 , · · · , ξp
s , +1, +1, ξp

s+3, ξp
s+4, · · · , ξp

p−1.

(where we have taken two internal +1 to illustrate the argument). Moving
the (two) internal +1 to the left does not decrease the number of −1 in
the product list Πp. Indeed, if the partial product of the first s terms is
+1, then the internal +1 simply repeat the +1. On the other hand, if the
partial product is −1, then the internal +1 have the effect of repeating this
−1, hence the total number of partial products equal to −1 increases.

The same argument shows that the maximum number of −1 in Πp is 3p−1
4 .

This occurs when all the −1 are aligned to the left of the +1. �

Corollary 5.13. For each prime p ≡ 3 mod 4, there exist at least p+1
4

numbers ki ∈ {0, 1, 2, · · · , p − 1} such that ωn is not a square for n ≡
ki mod p. This yields a multi-infinite family of indices n for which ωn is not
square.

Note. The total number of possible configurations of +1 and −1 is
( p−1
(p−1)/2

)

.

It would be of interest to explore how the +1 and −1 are distributed in Πp

as p varies. Figure 4 shows the proportion of −1 in Πp, that is around 1/2
for p large.

Figure 4. Proportion of minus ones for 6 ≤ p ≤ 3000. The
vertical range is 0.3 ≤ y ≤ 0.7.

6. The p-adic valuation of ωn

In this section we consider the p-adic valuation of ωn. Our goal is to
describe some relations between n and p that guarantees νp(ωn) is an odd
integer.
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Every odd prime divisor of ωn is congruent to 1 modulo 4. We consider
first the case p = 2 and then the odd primes. The case p = 2 admits a
complete analytic solution. To evaluate ν2(ωn), define

µ2(j) =

{

0 if j ≡ 0 mod 2,

1 if j ≡ 1 mod 2.

Proposition 6.1. The 2-adic valuation of ωn is given by

(6.1) ν2(ωn) = ⌊n + 1

2
⌋.

Proof. From ν2(1 + j2) = µ2(j), it follows that

ν2(ωn) =

n
∑

j=1

µ2(j) =

⌊
n+1

2 ⌋
∑

k=1

1 = ⌊n + 1

2
⌋.

�

Corollary 6.2. Suppose n ≡ 1, 2 mod 4, then ωn is not a square.

Proof. For these values of n, the valuation νp(ωn) is odd. �

Combining the previous corollary with Corollary 5.6 yields a result mod-
ulo 12.

Corollary 6.3. Suppose n 6≡ 0, 3, 8, 11 mod 12, then ωn is not a square.

The next result employs the solutions to x2 + 1 ≡ 0 mod p. This congru-
ence has two solutions in the range 2 ≤ x ≤ p − 1. We denote by αp the

root that satisfies 2 ≤ αp ≤ p−1
2 . The other root is α∗

p = p − αp. A simple

argument shows the lower bound αp ≥ √
p − 1. Moreover, this lower bound

is achieved precisely when p is a prime of the form 1 + n2.

Theorem 6.4. Let p be a prime, p ≡ 1 mod 4. Assume n ∈ N lies in the
range αp ≤ n < p − αp. Then ωn is not a square.

Proof. In the product

(6.2) ωn =

n
∏

j=1

(1 + j2),

only the term corresponding to j = αp is divisible by p. Moreover, since
1 + n2 < p2, we have ωp(1 + α2

p) = 1. �

The previous theorem guarantees that ωn is not a square for n in an
interval of length p − 2αp. Therefore it is efficient for those primes p for
which αp is small. The distribution of αp is a delicate question. We have
computed the root αp for primes of the form p = 4m + 1 in the range
1 ≤ m ≤ 20000. The ratio of αp to its upper bound 2m + 1 attained
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its maximum value 38228/38367 ∼ 0.996377 at m = 19183 for the prime
p = 76733. The minimum value 280/39201 ∼ 0.00714267 is achieved at
m = 19600 for the prime p = 78401. This is the largest prime of the form
1 + n2 in the range considered.

The distribution of αp is described in Figure 5. The graph shows the
normalized values

(6.3) αnor
p :=

αp −
√

p − 1

(p − 1)/2 −√
p − 1

,

for 6 ≤ p ≤ 250000. A result of W. Duke et al. [8], shows that these values
are uniformly distributed on [0, x] × [0, 1] for large x.

Figure 5. The values of αnor
p for 6 ≤ p ≤ 250000

Remark. Corollary 5.13 and Theorem 6.4 are a two-pronged approach in
compiling evidence in favor of Conjecture 1.5. The former gives a successive
list of infinite indices n, while the latter supplies endless interval ranges for
n so that ωn is not a square.

To each prime p ≡ 1 mod 4, associate the interval of N defined by

(6.4) Ip := [αp, p − 1 − αp].

Thus, if n ∈ Ip, then ωn is not a square. The authors wish to thank N.
Calkin for the sieve method used in the computations described in the next
paragraph.

Conjecture 1.5 is now restated as

(6.5)
⋃

p≡1 mod 4

Ip = N − {3}.

For notational simplicity, write ap = αp and bp = p − αp − 1, so that
Ip = [ap, bp]. In order to verify Conjecture 1.5 up to a certain bound n∗, it
suffices to exhibit a sequence of primes p1, p2, · · · , pk so that 4 ∈ Ip1

, each
interval Ipj

intersects the next one, and that bpk
> n∗. Proceed as follows:
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construct each pi+1 so that api+1 is just below bpi
− 1: the way to do this is

to consider, for j = 1, 2, · · · , the quantity m2 + 1 where m = pi − api
− j:

if there is a prime q > 2m, that divides m2 + 1, then m is the smaller root
of −1, namely aq. Hence we may take pi+1 = q and api+1

= m.

In practice, we look for the largest prime q appearing as a factor of m2 +1
for the first 6 values of m less than bpi

− 1.

Start with p1 = 17 and check that ap1
= 4 and bp1

= 12. Therefore, the
first interval is Ip1

= [4, 12], contains 4 as required. Now consider numbers
of the form m := bp1

− j = 12 − j. The case j = 2 gives

(6.6) (m − 2)2 + 1 = 101.

Therefore, p2 = 101 and the second interval is Ip2
= [10, 90]. The process

now continues with m := 90 − j and, with j = 6, we find

(6.7) (90 − 6)2 + 1 = 7057.

We choose p3 = 7057 and

(6.8) Ip3
= [84, 6972].

The list below provides the first six intervals. The chosen primes are
p1 = 17, p2 = 101, p3 = 7057, p4 = 48580901, p5 = 1179713094952813.

Ip1
= [ 4, 12 ] ,

Ip2
= [ 10, 90 ] ,

Ip3
= [ 84, 6972 ] ,

Ip4
= [ 6970, 48573930 ] ,

Ip5
= [ 48573925, 1179713046378883] .

Continuing this process, the next 8 more steps produce the following:

Computational fact. Assume the term ωn is a square. Then either n = 3
or n > 103200.

Proposition 6.1 provides an exact formula for the 2-adic valuation of ωn.
The extension of this result for odd primes seems unlikely. We now establish
an asymptotic result. Observe that

(6.9) ωn =
n
∏

j=1

(1 + j2) = n!2 ×
n
∏

j=1

(1 + 1/j2).

As n → ∞ we have
n
∏

j=1

(1 + 1/j2) →
∞
∏

j=1

(1 + 1/j2) =
sinh π

π
.
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We conclude that ωn = O(n!2). There is a famous result of Legendre [11, 12]
for the p-adic valuation of n!. It states that

(6.10) νp(n!) =
n − sp(n)

p − 1

where sp(n) is the sum of the base−p digits of n. In particular, sp(n) =
O(logp n) as n → ∞. Therefore

(6.11) νp(n!2) ∼ 2n

p − 1
.

The same is true for νp(ωn).

Theorem 6.5. Let p be an odd prime congruent to 1 mod 4. Then

νp(ωn) ∼ 2n

p − 1
.

Proof. Consider first the contribution of αp. Count the number of terms N1

in the product for ωn that are divisible by p. Recall that 1+ j2 ≡ 0 mod p if
and only if j ≡ α or α∗ = p − αp mod p. Therefore, each interval of length
p contains two such indices. The contribution of αp is

(6.12) N1 = ⌊n

p
⌋ +

{

1 if αp + ⌊n
p ⌋p ≤ n

0 if αp + ⌊n
p ⌋p > n.

Therefore N1 ≥ ⌊n
p ⌋. Similarly, by considering the elements αpi described

(1.25), one sees that the number of terms in [1, n] divisible by pi is at least
⌊ n

pi ⌋. Therefore, the contribution of αp to νp(ωn), denoted by νp(ωn, αp), is

at least

νp(ωn, αp) ≥
∞
∑

k=1

⌊ n

pk
⌋ =

zp,n
∑

k=1

⌊ n

pk
⌋,

where zp,n = ⌊logp n⌋. Now

νp(ωn, αp) ≥
zp,n
∑

k=1

⌊n

p
⌋ ≥

zn,p
∑

k=1

(

n

pk
− 1

)

= n

(

1 − p−1−zp,n

1 − 1/p
− 1

)

− zp,n ≥ n

(

1 − 1/n

1 − 1/p
− 1

)

− zp,n

=
n − p

p − 1
− zp,n.

Thus

(6.13)
p − 1

n
νp(ωn, αp) ≥ 1 − p

n
− p − 1

n
zp,n,

and it follows that

(6.14) lim inf
n→∞

p − 1

n
νp(ωn, αp) ≥ 1.
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The same holds for the contribution from α∗
p. We conclude that

(6.15) lim inf
n→∞

p − 1

2n
νp(ωn) ≥ 1.

To obtain an upper bound, observe again that νp(1+j2) = 0 unless j ≡ αp

or α∗
p modulo p. Define

(6.16) τn :=
n
∏

k=1

(1 + (pk + αp)
2) × (1 + (pk + α∗

p)
2).

The bounds on αp show that 1 + α2
p = pb1 with b1 6≡ 0 mod p. Write

(6.17) 1 + (pk + αp)
2 = pf(k),

with

(6.18) f(k) = b1 + 2αpk + pk2,

and conclude that

(6.19) νp(τn) = 2(n + 1) +
n
∑

k=0

νp(f(k)) +
n
∑

k=0

νp(f
∗(k)),

where f∗(k) is formed from α∗
p as f was from αp.

Define

(6.20) r(n) := Max
{

j : pj divides f(k) for some k ∈ {1, 2, · · · , n}
}

,

and let Ni be the number of terms in the sum (6.19) such that f(k) is
divisible by pi. Then

n
∑

k=0

νp(f(k)) = N1 + N2 + · · · + Nr(n)

≤ r(n) +

∞
∑

i=1

⌊ n

pi
⌋

≤ r(n) +
n

p − 1
.

Taking into account the contribution of α∗
p we obtain

(6.21) νp(τ(n)) ≤ 2(n + 1) + 2r(n) +
2n

p − 1
.

To obtain the estimate for νp(ωn), observe that

(6.22) νp(ωpn) = νp(τn−1).



ARCTANGENT SEQUENCE 27

Now use n ≤ Np with N := ⌊n
p ⌋ + 1 and since |f(k)| ≤ Ck3 shows that

pr(n) ≤ Cn3, then

νp(ωn) ≤ νp(ωNp) = νp(τN−1)

≤ 2

(

⌊n

p
⌋ + 1

)

+ 2r

(

⌊n

p
⌋
)

+
2⌊n

p ⌋
p − 1

≤ 2n

p − 1
+ 2 + 2r

(

⌊n

p
⌋
)

.

We conclude that

(6.23) lim sup
n→∞

p − 1

2n
νp(ωn) ≤ 1.

�

Remark 1. The error term

errorp(n) := νp(ωn) − 2n

p − 1
,

in Theorem 6.5 is shown in Figure 6 for p = 29 and 1 ≤ n ≤ 106. Figure
7 shows the difference between νp(ωn) and νp(n!2) for the same values of n.
These two functions have the same asymptotic behavior and νp(n!2) acts as
a stabilizing factor by absorbing the fluctuations. The patterns appearing
in this error terms have certain structure that deserves to be elucidated.

Figure 6. The error term in the 29-adic valuation of ωn.

Remark 2. The polynomial f , appearing in (6.18), satisfies f(k) ≡ b1 +
2αpk mod p. Therefore there is a unique solution to the congruence f(k) ≡
0 mod p. Moreover, f ′(k) ≡ 2αp 6≡ 0 mod p. Hensel’s lemma [10] guarantees
the existence of β̄ ∈ Zp such that f(β̄) = 0 in Qp. The number β̄ is written
as

(6.24) β̄ = β0 + β1p + β2p
2 + · · · .
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Figure 7. The error term ν29(ωn) − ν29(n!2).

Moreover,

(6.25) f(k) ≡ 0 mod pi if and only if k ≡
i−1
∑

m=0

βmpm mod pi.

Introduce the notation

(6.26) γ(i, p) = β0 + β1p + · · · + βi−1p
i−1,

and conclude that

n
∑

k=0

νp(f(k)) =

r(n)
∑

i=1

n
∑

k≡γ(i,p) mod p

1.

The fact is that

(6.27) Ni =
n
∑

k≡γ(i,p) mod p

1.

This point of view yields a more general result. Details will be presented
elsewhere.

Theorem 6.6. Let P be a polynomial with integer coefficients and without
integer roots. Define

(6.28) zp := |{b ∈ {0, 1, 2, · · · , p − 1 } : P (b) ≡ 0 mod p}|.
Assume that all the zp roots satisfy the hypothesis of Hensel’s lemma. Then
the recurrence tn := P (n)tn−1, with t0 = 1 satisfies

(6.29) νp(tn) ∼ zpn

p − 1
as n → ∞.

The next result establishes a connection between ωn and primes of the
form 1 + m2. The authors wish to thank C. Pommerance for providing this
result.
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Theorem 6.7. Suppose that for n ∈ N there exists an integer x0 such that
⌊√n⌋ + 2 ≤ x0 ≤ n and p = 1 + x2

0 is a prime. Then ωn is not a square.

Proof. We show that the prime p appears with exponent 1 in the product
ωn. The congruence 1 + x2 ≡ 0 mod p has two solutions αp, p − αp. The
bounds on x0 imply that x0 = αp. It follows that ⌊√n⌋+ 2 ≤ αp ≤ n. Then
the other root p − αp is bigger than n because α2

p − αp + 1 − n > 0. To

check this inequality observe that the largest root of x2 − x + 1 + n = 0 is
(1 +

√
4n − 3)/2 and

αp >
√

n + 1 >
1

2

(

1 +
√

4n − 3
)

.

To conclude the proof, observe that any other factor in ωn that produces a
multiple of p must be of the form αp + mp. But

αp + p = p − αp + 2αp = p + αp > n,

so they are outside the range 4 ≤ j ≤ n. �

The previous theorem can be improved by relaxing the condition that
1 + x2 is a prime.

Proposition 6.8. Suppose that for n ∈ N there exists a prime p, a real
number cn ∈ (0, 1] and positive integers x, y, with y odd, such that

(6.30) (1 + c−1
n )x ≤ p, ncn < x ≤ n, and νp(1 + x2) = y.

Then ωn is not a square.

Proof. The condition x ≤ n shows that py divides ωn. The hypothesis imply
that x is one of the solutions to 1 + x2 ≡ 0 mod p. The other solution is
p − x ≥ c−1

n x > n, so this term does not contribute to the product ωn. It
follows that νp(ωn) = y. The fact that y is odd, shows that ωn is not a
square. �

7. Miscellaneous

In this section we present several problems inspired by the results pre-
sented in this paper.

7.1. Connections with triangular numbers. Splitting the product

(7.1) ωn =
n
∏

j=1

(1 + j2)

according to the parity of the index j produces

(7.2)

n
∏

j=1

(1 + j2) = 2⌊(n−1)/2⌋−1

⌊n/2⌋
∏

k=1

(1 + 4k2) ×
⌊(n−1)/2⌋
∏

k=1

(1 + 4∆(k)),
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where

(7.3) ∆(k) =
k(k + 1)

2

is the k-th triangular number.

Conjecture 7.1. The even and odd parts of ωn are defined by

(7.4) tn :=

n
∏

k=1

(1 + 2k(k − 1)), and sn :=

n
∏

k=1

(1 + 4k2).

These products involve the triangular and square numbers respectively. Nei-
ther of them is a perfect square.

We now present a problem describing a connection between triangular
numbers and primes of the form 1 + x2.

Conjecture 7.2. Assume n ∈ N and n 6= 27, 35. Then there exists an
index x, such that ∆n ≤ x < ∆n+1 and 1 + x2 is prime.

Note. The authors wish to thank Dante Manna, who verified this conjec-
ture up to n = 106.

The next statement is the result of our study of the set of square-triangular
numbers:

(7.5) U := {1 + 4∆k : ∆k is a square}.

Proposition 7.3. Let x = ∆k be a square triangular number, i.e., s :=
1 + 4x ∈ U . Then
a) (s − 1)(2s − 1) is a perfect square.
b) s is not a prime, unless s = 5.

Proof. Part a) is elementary: (s−1)(2s−1) = 4j2(2k+1)2, where x = ∆k =
j2. To prove b), assume s is prime and observe from a) that s(2s − 3) =
(j − 1)(j + 1). If s divides j − 1, we have s(2s − 3) = sb(sb + 2), for some
b ∈ N. This is valid only if s = 5. On the other hand, if s divides j + 1,
we have 2s − 3 = c(sc − 2). An elementary argument shows that this is
impossible. �

Note. Part (b) of Proposition 7.3 informs us that identical entries in the
two products from (7.2) can not produce the same primes.

7.2. Connections with Stirling numbers. The Stirling numbers of the
first kind are given by

(7.1)
n
∏

k=1

(1 + kx) =
n+1
∑

k=1

(−x)n+1−ks(n + 1, k).
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It follows that

(7.2) S+(n) + iS−(n) =

n+1
∑

k=1

ik−1s(n + 1, k).

Introduce the notation

(7.3) Cj(n) :=
∑

k≥0

|s(n + 1, 4k + j)|

for 0 ≤ j ≤ 3. The number Cj(n) counts the total number of permutations
of {1, 2, . . . , n + 1}, which contain exactly 4k + j cycles, k ≥ 0.

The statements below provide a combinatorial interpretation of Conjec-
ture 1.2 as well as consequences of our established results.

Proposition 7.4. The symmetric functions S±(n) are given by

(−1)nS+(2n) = C1(2n) − C3(2n)

(−1)nS−(2n) = C0(2n) − C2(2n)

(−1)n+1S+(2n + 1) = C0(2n + 1) − C2(2n + 1)

(−1)nS−(2n + 1) = C1(2n + 1) − C3(2n + 1).

Proposition 7.5. The problem of whether xn or 1/xn is an integer is equiv-
alent to finding n ∈ N such that either C0−C2 divides C1−C3, or vice-versa.

For example, it is clear that C0 +C2 = C1 +C3 = n!/2. Theorem 2.1 and
its Corollary 2.7 show the following result.

Corollary 7.6. C0 6= C2 and C1 6= C3 for n ≥ 5. Also C0−C2 6= n(C1−C3)
and C1 − C3 6= n(C2 − C0).

7.3. The bound |xn| ≤ n. In this section we prove that the even and odd
subsequence of xn, namely {x2n} and {x2n+1} satisfy the bounds |x2n| ≤ 2n
and similarly |x2n+1| ≤ 2n + 1 for almost all n ∈ N. The exceptions are
described below. We give the details for x2n.

The parity dependent identities (3.8) show that

(7.1) x2n = tan

(

−
2n
∑

k=1

tan−1 1

k

)

.

The sequence x2n begins in a decreasing fashion:

{4, 105

73
∼ 1.4383,

36

43
∼ 0.837209,

2387

4511
∼ 0.529151,

104472

322921
∼ 0.323522 · · · }.

This continues until the angle

(7.2) −
2n
∑

k=1

tan−1 1

k
>

π

2
,
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so that the sequence jumps to the next branch of the tangent function. For
each j ∈ N define the transition points

(7.3) κ+
j := Inf

{

N ∈ N : −
2N
∑

k=1

tan−1 1

k
> (2j − 1)

π

2

}

.

The divergence of the series
∑

tan−1 1/k guarantees the existence of the
sequence

(7.4) κ := {κ+
1 , κ+

2 , κ+
3 , · · · }.

Conjecture 7.7. There exits a constant κ∞ such that the sequence κ+
j grows

quasi-geometrically as κj−1
∞ . Numerical calculations show that κ∞ ∼ 23.1.

Define the interval

(7.5) Ij := {m ∈ N : κ+
j ≤ m < κ+

j+1}.
The construction of the transition points immediately gives the next result:

Lemma 7.8. Fix j ∈ N. Then the sequence {x2n : n ∈ Ij} is decreasing.

Corollary 7.9. Let n, m ∈ Ij and n 6= m. Then xn 6= xm.

We now establish the promised bound.

Theorem 7.10. Fix j ∈ N. Then, for every n in the range κ+
j + 1 ≤ n ≤

κ+
j+1 − 2, we have |x2n| ≤ n + 1.

Proof. The sequence {x2n : n ∈ N} satisfies the recurrence

(7.6) x2n+2 =
a · x2n − b

b · x2n + a
,

where a = 2(2n + 1)(n + 1) − 1 and b = 4n + 3. This follows by iteration of
(1.5). The proof of the bound is divided in cases according to the sign of x2n.

Case 1. If x2n+2 > 0, then x2n > x2n+2 > 0 by Lemma 7.8. The result now
follows from

(7.7) x2n+2 =
a − b/x2n

b + a/x2n
<

a

b
≤ n + 1,

and the base case x2κ+

j
> 0.

Case 2. If x2n−2 < 0, then x2n < 0. We now take x2κ+

j+1
−2 < 0 as the base

case and work backwards. Define y2n := −x2n. Then (7.7) gives

(7.8) y2n−2 = |x2n−2| =
c · y2n − d

d · y2n + c
,

with c := 2n(2n− 1)− 1 and d := 4n− 1. The same argument given in Case
1 now yields |x2n−2| ≤ n.

In both cases we get the bound |x2n| ≤ n + 1. �
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Corollary 7.11. Assume n 6∈ κ. Then |x2n| ≤ n + 1. A similar conclusion
can be drawn for the odd terms.

7.4. The p-adic valuation of xn. It might be possible to extend the results
on ν2(xn) to odd prime valuations. Some information about the case p = 3
is given next. Extensive symbolic calculations suggest that

(7.1) ν3(xn) = 0,

precisely when n ≥ 5 and n ≡ 1 mod 3. Similar conjectures can be made for
the set

(7.2) τ3,1 := {n ∈ N : ν3(xn) = 1} = {6, 11, 15, 20, 24, · · · }.
We have observed that the difference set

(7.3) τ+
3,1 := {τ3,1(n + 1) − τ3,1(n) : n ≥ 5},

is the periodic sequence

(7.4) τ+
3,1 = {5,4} = {5, 4, 5, 4, · · · }.

Similarly

τ+
3,2 = {3, 1, 3, 2, 3, 1, 3, 11},

τ+
3,3 = {3, 1, 3, 20, 3, 1, 3, 47},

τ+
3,4 = {3, 1, 3, 74, 3, 1, 3, 155},

where we have only indicated the period.

There is a marked difference in the behavior according to whether p ≡
1 mod 4 or 3 mod 4. Figure 8 shows ν3(xn) and Figure 9 shows ν5(n).

500 1000 1500 2000

1

2

3

4

5

6

Figure 8. The 3-adic valuation of xn

An argument similar to the proof of Theorem 2.2 yields the next result.
The statement was found by examining the data given in the list τ+

3,s de-
scribed above.
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Figure 9. The 5-adic valuation of xn

Theorem 7.12. The 3-adic valuation of xn is given by

ν3(xn) = ν3(n(n + 1)) + δ9Z+5,n · ν3

(

⌊n + 4

3
⌋
)

+ δ9Z+3,n · ν3

(

3⌊n + 3

9
⌋
)

.

Here δA,n is the Knonecker delta: 1 if n ∈ A and 0 otherwise.

Once again, the next result can be established as in the case p = 2.

Proposition 7.13. The even partial sums satisfy ν3(S+(n)) = 0 and the
odd ones ν3(S−(n)) = ν3(xn).

7.5. Geometric properties of the sequence xn. The representation

(7.1) xn =
S−(n)

S+(n)
,

established in Theorem 3.6 has a geometric interpretation. We consider the
map

(7.2) η(n) := (S+(n), S−(n)).

The point η(n) has modulus ωn and the sequence

(7.3)
ωn

n!2
=

n
∏

j=1

(

1 +
1

j2

)

converges from below to its limit sinh π
π .

Define

(7.4) a+(n) :=
S+(n)

n!
, a−(n) :=

S−(n)

n!
.

Naturally, xn = a−(n)/a+(n). We consider the generating functions

(7.5) A+(x) :=

∞
∑

n=1

a+(n)xn, A−(x) :=

∞
∑

n=1

a−(n)xn.
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Lemma 7.14. The sequences a±(n) satisfy the discrete dynamical system

(n + 1)a−(n + 1) − a−(n) = (n + 1)a+(n),(7.6)

(n + 1)a+(n + 1) − a+(n) = −(n + 1)a−(n),

with initial conditions a+(1) = 1, a+(2) = −1, a−(1) = 1, a−(2) = 3.
Therefore, the generating functions are given by

A+(x) =
etan−1 x

1 + x2

(

x cos(log(
√

1 + x2)) + sin(log
√

1 + x2)
)

,

A−(x) =
etan−1 x

1 + x2

(

x cos(log(
√

1 + x2)) − x sin(log
√

1 + x2)
)

,

Thus, the pair (A+(x), A−(x)) forms a spiral in the complex plane, running
inward towards the origin.

Proof. The recurrences (7.6) show that A+(x) and A−(x) both solve the
second order differential equation

(7.7) (1 + x)(1 + x2)D2y + (3x2 + 2x − 3)Dy + 2(x + 2)y = 0.

Standard techniques produce the analytic solutions given above. �

7.6. A connection with Euler’s constant. The claim in this section
corresponds to an analogue of Proposition 5.1. More precisely, the proof of
the above-mentioned proposition exploits the existence of a prime between
an integer and its double (this is Bertrand’s postulate). In the same spirit,
our claim highlights a prime p between n and 1 + n2, for which νp(ωn) = 1,
that is, p divides ωn but p2 does not. The conclusions described in this
section are by-in-large empirical and the arguments are heuristic.

Section 7.5 shows that the expressions

(7.1) ωn = (1 + 12)(1 + 22)(1 + 32) · · · (1 + n2),

and n!2 are of comparable size. Morever, Theorem 6.5 establishes that the
p-adic valuations of these two terms have the same asymptotic behavior.
Naturally, every prime p < n divides n!, but only primes p ≡ 1 mod 4
divide ωn. Therefore, ωn is missing (essentially) half the primes of n!2.

Denote by P := {p1 < p2 < p3 · · · } be the complete set of primes, and

P(1) := {q1 < q2 < q3 · · · } be those primes qi ≡ 1 mod 4. The classical prime
number theorem shows that pn ∼ n log n, and P. Dusart [9] proved that

(7.2) n log n + n log log n − n < pn < n log n + n log log n, n ≥ 2.

The proof is based on the knowledge of the first 1.5 billion zeros of the
Riemann zeta function ζ(s), that lie on the critical line Re s = 1

2 . Using the

equi-distribution of primes P(1) in P to conclude that

(7.3) 2n log 2n + 2n log log 2n − 2n < qn < 2n log 2n + 2n log log 2n,

at least for large values of n.
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The objective is now to produce a sequence of indices y(n) so that qn

divides ωy(n), but q2
n does not. In order to accomplish this, observe first

that, if q is a prime such that m < q < 1 + m2, then νq(ωm) ≤ 2. In fact,
νq(ωm) = 2 if and only if both αq, α∗

q ≤ m.
The inequalities (7.3) suggest that we choose m around 2n log 2n. In order

to fine-tune the constant in m = C3n log n, we make use of the inequalities

(7.4)
√

C1m! <
√

ωm <
√

C2m!,

with C1 ≥ 5
2 and C2 ≤ sinh π

π ∼ 3.676. The identity

(7.5)
sinhπ

π
= lim

k→∞

k
∏

j=1

(

1 +
1

j2

)

and the observation

(7.6)
k
∏

j=1

(

1 +
1

j2

)

∼ 1 + H
(2)
k ,

where H
(2)
k is the second harmonic number, lead to

(7.7)

√

H
(2)
k ∼ H

(1)
k ∼ log k + γ,

where γ is Euler’s constant defined by

(7.8) γ := lim
n→∞

n
∑

k=1

1

k
− log n.

The logarithmic part has been absorbed, so we consider m = y(n) ∼
γn log n. Numerical experiments suggested the extra factor

√
5 in the next

statement.

Theorem 7.15. Define y(n) := ⌊
√

5 γ n log n⌋. Then, for almost all n ∈ N,
we have

(7.9) νqn(ωy(n)) = 1.

Finally, consider the intervals Jk := [y(k), y(k + 1) ), with y(k) as above.
This yields a partition of N in the form

(7.10) N =
⋃

k≥2

Jk.

Given n ∈ N, there is a unique k such that n ∈ Jk. Define the map

(7.11) Φ(n) =











νqk
(ωn) if νqk

(ωyk
) = 1,

νqk−1
(ωn) if νqk

(ωyk
) = 0,

νqk+1
(ωn) if νqk

(ωyk
) = 2.



ARCTANGENT SEQUENCE 37

The previous theorem guarantees that almost all cases correspond to the
first choice in (7.11). The other two cases rectify the exceptions. The last
two assignments are implicitly guided by the prime gaps to the effect that

(7.12) pN+1 − pN = O (
√

pN log pN ) .

H. Cramer [7] proved (7.12) assuming the validity of the Riemann hypoth-
esis.

Conjecture 7.16. For n ≥ 4, we have Φ(n) = 1. Hence, ωn is not a square.
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