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Abstract. Let tn be a sequence that satisfies a first order homogeneous re-
currence tn = Q(n)tn−1, where Q is a polynomial with integer coefficients.
We describe the asymptotic behavior of the p-adic valuation of tn.

1. Introduction

The p-adic valuation νp(x), for x ∈ Q, x 6= 0, is defined by

(1.1) x = pνp(x) a

b
,

where a, b ∈ Z and p divides neither a nor b. The value νp(0) is defined to be ∞.
In this paper we establish the asymptotic behavior of the p-adic valuation of

sequences that satisfy first order recurrences

(1.2) tn = Q(n)tn−1, n ≥ n0,

where Q is a polynomial with integer coefficients and n0 ∈ N. Let v be the maximum
modulus of all the (possibly none) zeros of Q in Z. If v > 0, we choose n0 > v, to
guarantee tn 6= 0. Without loss of generality, we always assume that n0 = 0 and
t0 = 1. The notation tn(Q) is used while refering to (1.2).

The identity

(1.3) νp(tn(Q)) =
n
∑

i=1

νp(Q(i)),

shows that only the zeros of Q in Z/pZ contribute to the value of νp(tn(Q)). More-
over, it shows that it suffices to consider the case where Q(x) is irreducible over
Z. This assumption will be enforced. The asymptotic analysis employs Hensel’s
lemma. The version stated here is reproduced from [3].

Lemma 1.1. (Hensel’s Lemma) Let f be a polynomial with coefficients in the p-
adic integers Zp. Write f ′(x) for its formal derivative. If f(x) ≡ 0 mod p has a
solution a1, satisfying f ′(a1) 6≡ 0 mod p, then there is a unique p-adic integer a
such that f(a) = 0 and a ≡ a1 mod p.

We now state our main result. It provides an asymptotic description of the
valuation of the sequence tn, defined by (1.2).
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Theorem 1.2. Let Q(x) ∈ Z[x]. Assume Q(x) factors over Zp as

(1.4) Q(x) =





m
∏

j=1

(x − βj)



Q1(x),

where Q1(x) 6≡ 0 mod p for any x ∈ Zp. Then the sequence {tn}, defined by (1.2),
satisfies

(1.5) νp(tn(Q)) =
mn

p − 1
+ O(log n).

Section 2 contains the proof of Theorem 1.2 and Section 3 presents examples
illustrating the main result.

2. The Proof

Assume Q has no roots in N ∪ {0}. The general case is reduced to this one
by a shift of the independent variable. Using (1.4) it suffices to the study of the
asymptotic behavior of

(2.1) νp

(

n
∏

i=1

(i − βj)

)

.

Define

(2.2) rjn = max{k : pk|(i − βj) for some 1 ≤ i ≤ n}.

The value of (2.1) is given by

(2.3)

rjn
∑

k=1

#{1 ≤ i ≤ n : pk|(i − βj)}.

Let γjk ∈ Z be such that

(2.4) βj ≡ γjk mod pk.

Then pk|(i− βj) if and only if i ≡ γjk mod pk. Since the number of such i between
1 and n is either

(2.5)

⌊

n

pk

⌋

or

⌊

n

pk

⌋

+ 1,

we have

(2.6)

rjn
∑

k=1

⌊

n

pk

⌋

≤ νp

(

n
∏

i=1

(i − βj)

)

≤

rjn
∑

k=1

⌊

n

pk

⌋

+ 1.

By definition prjn divides |Q(i)| for some 1 ≤ i ≤ n. Therefore

(2.7) prjn ≤ |Q(i)| ≤ max{|Q(1)|, |Q(2)|, · · · , |Q(n)|} ≤ Cndeg(Q),

where the constant C depends only on the coefficients of Q. This implies that
rjn = O(log n). From (2.6) we now obtain

(2.8)

rjn
∑

k=1

(

n

pk
− 1

)

≤ νp

(

n
∏

i=1

(i − βj)

)

≤

rjn
∑

k=1

(

n

pk
+ 1

)



ASYMPTOTIC OF SEQUENCES 3

and

(2.9) νp

(

n
∏

i=1

(i − βj)

)

=
n

p − 1
−

np−rjn

p − 1
+ O(log n).

The bound rjn ≥ ⌊log n)/ log p⌋ shows that the second term in (2.9) satisfies

(2.10)
np−rjn

p − 1
= O(1),

and we conclude that

(2.11) νp

(

n
∏

i=1

(i − βj)

)

=
n

p − 1
+ O(log n).

Theorem 1.2 has been established.

We now consider the factorization (1.4). If all zeros of Q(x) in Z/pZ satisfy the
hypothesis of Hensel’s Lemma, then Q(x) factors over the p-adic numbers as

(2.12) Q(x) =





zp(Q)
∏

j=1

(x − βj)



Q1(x),

where βj are p-adic integers and Q1(x) ≡ 0 mod p has no solutions in Z/pZ. There-
fore we have

Corollary 2.1. Let Q(x) ∈ Z[x]. Assume each of the roots of Q satisfy the hy-
pothesis of Hensel’s Lemma. Let zp(Q) denote the number of roots of Q in Z/pZ,
that is,

(2.13) zp(Q) = |{b ∈ {1, 2, · · · , p} : Q(b) ≡ 0 mod p}| .

Then the sequence {tn}, defined by (1.2), satisfies

(2.14) νp(tn(Q)) =
zp(Q)n

p − 1
+ O(log n).

3. Examples

In this section we present some examples illustrating Theorem 1.2.

Definition 3.1. Given a polynomial Q(x) ∈ Z[x] and a prime p, we say that
a ∈ Z/pZ is a Hensel zero of Q if Q(a) ≡ 0 mod p and Q′(a) 6≡ 0 mod p. The prime
p is called a Hensel prime for Q if all the zeros of Q in Z/pZ are Hensel zeros.

If Q(x) is irreducible over Z, any prime that does not divide the discriminant
D(Q) of Q is a Hensel prime. This follows from the fact that D(Q) is the resultant
of Q and Q′ (see [2]), and so there exist polynomials A(x) and B(x) with integers
coefficients such that A(x)Q(x) + B(x)Q′(x) = D(Q).

Corollary 2.1 is now expressed as:

Corollary 3.1. Let p be a Hensel prime for Q(x) ∈ Z[x]. Then the sequence {tn}
satisfies

(3.1) νp(tn(Q)) =
zp(Q)n

p − 1
+ O(log n).
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This is illustrated in the next example.

Example 3.2. Let Q(x) = x2 − 17. The discriminant of Q is given by D(Q) =
68 = 22 · 17. Therefore the non-Hensel primes for Q are p = 2 and 17. For all other
primes p we have

(3.2) νp(tn(Q)) ∼
zp(Q)n

p − 1
=

2n

p − 1
,

if 17 is a square modulo p and νp(tn) = 0, otherwise.

The cases p = 2 and p = 17 are discussed next. For p = 2, note that only
1 ∈ Z/2Z is a zero modulo 2 with Q(1) = −16 and Q′(1) = 2. The analysis of
the asymptotics of ν2(tn) requires a modified version of Hensel’s Lemma in which
the condition f ′(a1) 6≡ 0 mod p is replaced by |f(a1)|p < (|f ′(a1)|p)

2. See [1] for
details. The inequality |Q(1)|2 < (|Q′(1)|2)

2 shows that the root a = 1 ∈ Z/2Z

can be lifted to an element α ∈ Z2 with Q(α) = 0. Then −α is the second root
of Q(x) and we conclude that ν2(tn) ∼ 2n. Figure 1 shows ν2(tn). For the prime
p = 17, this method does not apply because Q(x) is irreducible over Z17. The result
ν17(tn) ∼ n/17 will be established as a consequence of Theorem 3.4.
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Figure 1. The valuation ν2(tn) for Q(x) = x2 − 17.

Example 3.3. Let Φp(x) = xp−1 + xp−2 + · · · + 1 for p an odd prime. This
polynomial is irreducible over Zp so the general method described above does not
apply. However, it is easy to establish

νp(Φp(x)) =

{

0 if x 6≡ 1 mod p
1 if x ≡ 1 mod p.

(3.3)

We conclude that νp(tn(Φp)) ∼ n/p. Figure 2 shows ν5(tn(Φ5)).

The next theorem provides a framework for irreducible polynomials that includes
the previous two examples.

Theorem 3.4. Assume that Q(x) is a monic irreducible polynomial of degree m > 1
over Zp. Define l = sup{k : pk|Q(i) for some i ∈ Z}. Then

(3.4) νp(tn(Q)) =

⌊l/m⌋
∑

k=1

m
n

pk
+

(

l − m

⌊

l

m

⌋)

n

p⌊l/m⌋+1
+ O(1).
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Figure 2. The valuation ν5(tn(Φ5)).

Proof. The compactness of Zp shows that l < ∞. If not, there is a sequence of
integers {an} such that Q(an) → 0 in Qp. The limit of any convergent subsequence
produces a zero of Q in Zp. This contradicts the irreducibility of Q(x) over Zp.

Without loss of generality assume l ≥ 1. Let n0 ∈ Z be such that pl|Q(n0).
Assume that α1, · · · , αm are the roots of Q(x) in the algebraic closure Q̄p of Qp.
The p-adic absolute value on Qp can be extended to Q̄p and this extension is
invariant under Galois transformations over Qp. Thefore, for i ∈ Z we have that
|i − αj |p is the same for all j = 1, · · · , m. Since |Q(n0)|p = p−l we conclude that

|n0 − αj |p = p−l/m.
Now, assume |i − n0|p = p−k. If k ≤ l/m, then it is clear that |i − αj |p = p−k

and |Q(i)|p = p−mk. This is a direct consequence of the nonarchimedean triangle
inequality. On the other hand, if k > l/m, then |Q(i)|p = p−l. This is because
|Q(i)|p ≥ p−l for any i ∈ Z. Since

#{1 ≤ i ≤ n : |i − n0|p = p−k} =
n

pk
−

n

pk+1
+ O(1)

and
#{1 ≤ i ≤ n : |i − n0|p ≤ p−(⌊l/m⌋+1)} =

n

p⌊l/m⌋+1
+ O(1),

we conclude that

νp(tn(Q)) =

⌊l/m⌋
∑

k=1

mk
n

pk

(

1 −
1

p

)

+ l
n

p⌊l/m⌋+1
+ O(1)(3.5)

=

⌊l/m⌋
∑

k=1

m
n

pk
+

(

l − m

⌊

l

m

⌋)

n

p⌊l/m⌋+1
+ O(1).

Theorem 3.4 has been established. �

Note 3.1. In example 3.3 we have l = 1. Therefore (3.4) gives νp(tn(Φp)) =
n/p + O(1), as before. A similar argument shows that, in the case p = 17 in
example 3.2, we obtain ν17(tn(Q)) = n/17 + O(1). This completes the analysis
presented in that example.
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