GENERALIZED EXPONENTIAL SUMS AND THE POWER OF COMPUTERS

FRANCIS N. CASTRO, OSCAR E. GONZÁLEZ, AND LUIS A. MEDINA

Abstract. Today’s era can be characterized by the rise of computer technology. Computers have been, to some extent, responsible for the explosion of the scientific knowledge that we have today. In mathematics, for instance, we have the Four Color Theorem, which is regarded as the first celebrated result to be proved with the assistance of computers. In this article we generalize some fascinating binomial sums that arise in the study of Boolean functions. We study these generalizations from the point of view of integer sequences and bring them to the current computer age of mathematics. The asymptotic behavior of these generalizations is calculated. In particular, we show that a previously known constant that appears in the study of exponential sums of symmetric Boolean functions is universal in the sense that it also emerges in the asymptotic behavior of all of the sequences considered in this work. Finally, in the last section, we use the power of computers and some remarkable algorithms to show that these generalizations are holonomic, i.e., they satisfy homogeneous linear recurrences with polynomial coefficients.

1. Introduction

Number theory and combinatorics often offer tantalizing objects that captivate the imagination of mathematicians. Almost all of us have played with prime numbers, explored open problems like Goldbach’s conjecture or drawn a lattice on a paper just to see how Catalan numbers work. Nowadays, computer technology allows us to extend the limit of our knowledge and explore these objects in a way that was almost unimaginable 40 years ago. In this work, we pay close attention to some binomial sums that come from the theory of Boolean functions. These binomial sums emerge when the problem of balancedness of these functions is considered. As it is a common practice in mathematics, the idea in this work is to study these binomial sums in a more general framework. Once the proper framework is established, we use the power of computers to expand our knowledge. We start this work with a short survey of Boolean functions and exponential sums in an effort to make the manuscript self-contained. The expert reader may skip the majority of it.

A Boolean function is a function from the vector space \(\mathbb{F}_2^n \) to \(\mathbb{F}_2 \) where \(\mathbb{F}_2 = \{0, 1\} \) is the binary field and \(n \) is some positive integer. These functions are beautiful combinatorial objects with applications to many areas of mathematics as well as outside the discipline. Some examples include combinatorics, electrical engineering, game theory, the theory of error-correcting codes, and cryptography. In the current era, efficient implementations of Boolean functions with many variables is a challenging problem due to memory restrictions of current technology. Because of this, symmetric Boolean functions are good candidates for efficient implementations.

It is known that every Boolean function can be identified with a multivariable polynomial. Let \(F(X) = F(X_1, \ldots, X_n) \) be a polynomial in \(n \) variables over \(\mathbb{F}_2 \). Assume that \(F(X) \) is not a polynomial in some subset of the variables \(X_1, \ldots, X_n \). The exponential sum associated to \(F \) over \(\mathbb{F}_2 \) is

\[
S(F) = \sum_{x \in \mathbb{F}_2^n} (-1)^{F(x)}.
\]

A Boolean function \(F(X) \) is called balanced if \(S(F) = 0 \), i.e., the number of zeros and the number of ones are equal in the truth table of \(F \). In many applications, especially ones related to cryptography, it is important for Boolean functions to be balanced. Balancedness of Boolean functions is an active area of research with open problems even for the relatively simple symmetric case \([1, 2, 3, 4, 5, 6, 8, 9, 10, 14, 16, 21]\).

Our interest in this work lies in symmetric Boolean functions and therefore, an important step is to try to see how exponential sums of symmetric Boolean functions look like. Let \(\sigma_{n,k} \) denote the elementary
symmetric polynomial in \(n \) variables of degree \(k \). This polynomial is formed by adding together all distinct products of \(k \) distinct variables. For example,

\[
\sigma_{4,3} = X_1X_2X_3 + X_1X_4X_3 + X_2X_4X_3 + X_1X_2X_4.
\]

Elementary symmetric polynomials are the building blocks of symmetric Boolean functions, as every such function can be identified with an expression of the form

\[
\sigma_{n,k_1} + \sigma_{n,k_2} + \cdots + \sigma_{n,k_s},
\]

where \(0 \leq k_1 < k_2 < \cdots < k_s \) are integers. For the sake of simplicity, we use the notation \(\sigma_{n,[k_1,\ldots,k_s]} \) to denote (1.3). For example,

\[
\sigma_{3,[2,1]} = \sigma_{3,2} + \sigma_{3,1} = X_1X_2 + X_3X_2 + X_1X_3 + X_2 + X_3.
\]

It turns out that exponential sums of symmetric polynomials have nice representations as binomial sums. Define \(A_j \) to be the set of all \((x_1,\ldots,x_n) \in \mathbb{F}_2^n\) with exactly \(j \) entries equal to 1. Clearly, \(|A_j| = \binom{n}{j} \) and by symmetry \(\sigma_{n,k}(x) = \binom{j}{k} \) for \(x \in A_j \). Therefore,

\[
S(\sigma_{n,k}) = \sum_{j=0}^{n} \sum_{x \in A_j} (-1)^{\sigma_{n,k}(x)} = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j}.
\]

In general, if \(0 \leq k_1 < k_2 < \cdots < k_s \) are fixed integers, then

\[
S(\sigma_{n,[k_1,\ldots,k_s]}) = \sum_{j=0}^{n} (-1)^{j} \binom{j}{k_1} + \binom{j}{k_2} + \cdots + \binom{j}{k_s} \binom{n}{j}.
\]

Equation (1.6) is a clear computational improvement over (1.1). It also connects the problem of balancedness of symmetric Boolean functions to the intriguing problem of bisecting binomial coefficients (see Mitchell [17]). A solution \((\delta_0, \delta_1, \ldots, \delta_n)\) to the equation

\[
\sum_{j=0}^{n} \delta_j \binom{n}{j} = 0, \quad \delta_j \in \{-1,1\},
\]

is said to give a \textit{bisection of the binomial coefficients} \(\binom{n}{j} \), \(0 \leq j \leq n \). Observe that a solution to (1.7) provides us with two disjoints sets \(A, B \) such that \(A \cup B = \{0,1,2,\ldots,n\} \) and

\[
\sum_{j \in A} \binom{n}{j} = \sum_{j \in B} \binom{n}{j} = 2^{n-1}.
\]

The problem of bisecting binomial coefficients is an interesting problem in its own right, however, it is out of the scope of this work.

The identity (1.6) was used by Castro and Medina (see [5]) to study exponential sums of symmetric Boolean functions from the point of view of integer sequences. As part of their study, they showed that the sequence \(\{S(\sigma_{n,[k_1,\ldots,k_s]})\}_{n \in \mathbb{N}} \) satisfies the homogeneous linear recurrence

\[
a(n) = \sum_{j=1}^{2^{r-1}} (-1)^{j-1} \binom{2^r}{j} a(n-j),
\]

where \(r = \lceil \log_2(k_s) \rceil + 1 \) (this result was first proved by Cai, Green and Thierauf [2, Th. 3.1, p. 248]). The characteristic polynomial of (1.9) is given by

\[
(t - 2)\Phi_4(t-1)\Phi_6(t-1)\cdots\Phi_{2^r}(t-1),
\]

where \(\Phi_n(t) \) represents the \(n \)-th cyclotomic polynomial. This is very important, as it implies that (1.9) has an embedded nature. Before giving the formal definition of what we mean by “embedded nature”, let us explore recurrence (1.9) in order to have a better understanding of where we want to go with this term. Observe that the exponential sum of every symmetric Boolean function of degree less than 4 satisfies

\[
a(n) = \sum_{j=1}^{3} (-1)^{j-1} \binom{4}{j} a(n-j),
\]
the exponential sum of every symmetric Boolean function of degree less than 8 satisfies

\[a(n) = \sum_{j=1}^{7} (-1)^{j-1} \binom{8}{j} a(n-j), \]

the exponential sum of every symmetric Boolean function of degree less than 16 satisfies

\[a(n) = \sum_{j=1}^{15} (-1)^{j-1} \binom{16}{j} a(n-j), \]

and so on. This means, for example, that \(S(\sigma_{n, [7,2]}(x)) \) for which the first few values are given by

\[2, 4, 6, 8, 12, 24, 58, 144, 344, 784, 1716, 3632, 7464, 14928, 29128, 55680, 104960, \ldots \]

must satisfy (1.12) and (1.13), but not (1.11). Next is the formal definition of embedded recurrences.

Definition 1.1. Let \(\{ a_f(x)(n) \} \) be a family of integer sequences indexed by some polynomial family \(\{ f(x) \} \). Suppose that every sequence \(\{ a_{f(x)}(n) \} \) satisfies a linear recurrence. We say that these recurrences are embedded if there is a sequence of integers \(n_1 < n_2 < n_3 < \cdots \), such that every sequence \(\{ a_{f(x)}(n) \} \) with the property \(\text{deg}(f) < n_l \) satisfies a global recurrence. For example, the sequences of exponential sums of symmetric Boolean functions satisfy recurrences that are embedded. In this case, \(n_l = 2^l \) and the global recurrence is (1.9).

Castro and Medina [5] also computed the asymptotic behavior of \(S(\sigma_{n, [k_1, \ldots, k_s]}(x)) \) as \(n \to \infty \). To be specific, they showed that

\[\lim_{n \to \infty} \frac{1}{2^n} S(\sigma_{n, [k_1, \ldots, k_s]}(x)) = c_0(k_1, \cdots, k_s) \]

where

\[c_0(k_1, \cdots, k_s) = \frac{1}{2^r} \sum_{j=0}^{2^r-1} (-1)^{j_1+\cdots+j_s}. \]

They used this limit to show that a conjecture by Cusick, Li and Stănică [9] is true asymptotically. Some of these results, especially recurrence (1.9) and limit (1.14), were extended to some perturbations of symmetric Boolean functions [6].

In this manuscript, we generalize the concept of exponential sums of symmetric Boolean functions by virtue of the binomial sum in (1.6) and study some of its properties. Let \(d \) be a non-negative integer. We define the \(d \)-generalized exponential sum of \(\sigma_{n, [k_1, \ldots, k_s]}(x) \) as the power sum of binomial coefficients given by

\[S_d(\sigma_{n, [k_1, \ldots, k_s]}(x)) = \sum_{j=0}^{n} (-1)^{j_1+\cdots+j_s} \binom{n}{j}^d. \]

In a similar manner, if \(Q(x) = a_0 + a_1 x + \cdots + a_d x^d \) is a polynomial, then the \(Q(x) \)-generalized exponential sum of \(\sigma_{n, [k_1, \ldots, k_s]}(x) \) is defined as

\[S_{Q(x)}(\sigma_{n, [k_1, \ldots, k_s]}(x)) = \sum_{j=0}^{n} (-1)^{j_1+\cdots+j_s} Q \left(\binom{n}{j} \right). \]

By linearity, the study of (1.17) is reduced to the study of (1.16). Thus, emphasis is made on \(d \)-generalized exponential sums.

It is clear that if \(d = 1 \), then the \(d \)-generalized exponential sum is just the regular exponential sum. However, we point out that \(d \)-generalized exponential sums generalize other combinatorial objects. For instance, when degree 0 is considered, we have \(S_d(\sigma_{n, 0}) = -f_{n, d} \) where

\[f_{n, d} = \sum_{j=0}^{n} \binom{n}{j}^d. \]

This generalization provides a rich framework for studying exponential sums beyond the traditional symmetric Boolean functions.
is the d-th order Franel number. When $k = 1$,

\begin{equation}
S_d(\sigma_{n,1}) = \sum_{j=0}^{n} (-1)^j \binom{n}{j}^d
\end{equation}

is the d-th order alternate Franel number, for which, when $d = 3$, we have the beautiful identity of Dixon

\begin{equation}
S_3(\sigma_{2n,1}) = \sum_{j=0}^{2n} (-1)^j \binom{2n}{j}^3 = (-1)^n \binom{2n}{n} \binom{3n}{n}.
\end{equation}

Finally, the sequence $\{x_n\}$ defined by $x_0 = 0$, $x_1 = 3$ and $x_n = S_0(\sigma_{n-1,3})$ can be identified with sequence A018837 in [19], which represents the minimum number of steps for a knight which starts at position $(0,0)$ to reach $(n,0)$ on an infinite chessboard.

In this article we extend some of the results that appear in [5, 6] to d-generalized exponential sums. In particular, we show that these sequences satisfy recurrences and, as it is the case for $d = 1$, there is an embedded component behind it. We also calculate the asymptotic behavior of these sequences and show that the constant $c_0(k_1, \ldots, k_s)$ is universal in the sense that it appears in the asymptotic behavior of $S_Q(x)(\sigma_{n,[k_1,\ldots,k_s]})$ for every polynomial $Q(x)$. The case $d = 0$ turns out to be relatively easy when compared to the case $d \neq 0$, and, as a result, we decided to discuss it now. First, it is clear that $S_0(\sigma_{n,[k_1,\ldots,k_s]}) = O(n)$. Second, if $r = \lfloor \log_2(k_s) \rfloor + 1$, then it satisfies the linear recurrence

\begin{equation}
a(n) = a(n-1) + a(n-2^r) - a(n-2^r-1).
\end{equation}

The characteristic polynomial of (1.21) is given by

\begin{equation}
(t-1)^2 \Phi_2(t) \Phi_4(t) \cdots \Phi_{2^r}(t),
\end{equation}

and therefore, as in the case $d = 1$, these recurrences are embedded. Finally, if i_1, \ldots, i_p are all the integers between 1 and 2^r-1 such that $(i'_1) \ldots + (i'_s) \equiv 1 \pmod{2}$, then it is not hard to see that

\begin{equation}
S_0(\sigma_{n,[k_1,\ldots,k_s]}) = n + 1 - 2 \left[\frac{n+1-i_1}{2^r} \right] - \cdots - 2 \left[\frac{n+1-i_p}{2^r} \right].
\end{equation}

The asymptotic behavior of d-generalized exponential sums is discussed first (next section). Then, in Section 3, we use computer power to find recurrences for these sums. The reader is invited to use her favorite computer algebra system while reading this manuscript. This is not necessary, as we believe the manuscript is self-contained, however we encourage experimentation because it helps to build intuition and to cement and appreciate mathematical knowledge.

2. ASYMPTOTIC BEHAVIOR OF THE GENERALIZED EXPONENTIAL SUM

The asymptotic behavior of $S(\sigma_{n,k})$ as $n \to \infty$ was used in [5] to show a conjecture by Cusick, Li and Stǎnicǎ [9] is true for large n. This shows the importance of the behavior of $S(\sigma_{n,[k_1,\ldots,k_s]})$ as n increases. In this section we discuss the asymptotic behavior of $\{S_d(\sigma_{n,[k_1,\ldots,k_s]})\}_{n \in \mathbb{N}}$ and show that the behavior of $\{S_d(\sigma_{n,[k_1,\ldots,k_s]})\}_{n \in \mathbb{N}}$, as n increases, is closely related to that of $\{S(\sigma_{n,[k_1,\ldots,k_s]})\}_{n \in \mathbb{N}}$.

We start our discussion with the case $d = 2$ and $k = 3$, this is, we consider the sequence $\{S_2(\sigma_{n,3})\}_{n \in \mathbb{N}}$. The idea for doing this is to get an insight of what is behind the asymptotic behavior of these sequences. A proof for the general case will be provided later in this section once our intuition is solidified.

The first few values of the sequence $\{S_2(\sigma_{n,3})\}_{n \in \mathbb{N}}$ are given by

\[2, 6, 18, 38, 52, 124, 980, 6470, 31916, 127156, \ldots\]

It is not surprising, knowing already the behavior of $S(\sigma_{n,3})$, that the value of the nth term of the sequence $\{S_2(\sigma_{n,3})\}_{n \in \mathbb{N}}$ increases quite rapidly as $n \to \infty$. Now, by previous knowledge we have that

\[\lim_{n \to \infty} \frac{1}{2^n} S(\sigma_{n,3}) = \frac{1}{2},\]

where 2^n is the number of n-tuples with 0, 1 entries, thus, it is natural to consider the behavior of $S_2(n,3)/2^n$. The reader can check via computer experimentation that $S_2(n,3)/2^n$ seems to diverge to ∞, which, if true, it would imply that our sequence increases a rate that is faster than 2^n. Taking into consideration that in
this case $d = 2$, then it is not a wild idea to check the behavior of $S_2(\sigma_n) / 2^{2n}$. In this case, the reader can convince herself that $S_2(\sigma_n) / 4^n \to 0$ as $n \to \infty$. Moreover, experiments on a computer suggest that

$$
\lim_{n \to \infty} \frac{1}{4^n} S_2(\sigma_n,k) = 0
$$

for any positive integer k. For example, the values of $S_2(\sigma_n) / 4^n$ for $n = 10, 100,$ and 1000 are given by $0.148731, 0.0426647,$ and $0.0133793,$ respectively. Thus, it appears that $S_2(\sigma_n,k)$ increases faster than 2^n, but slower than 4^n. So, what is the appropriate behavior?

To answer the question, we start by analyzing what is the reason behind the behavior of the regular exponential sum $S(\sigma_n)$. Using the definition of $S(\sigma_n,k)$ in terms of binomial coefficients, we see that

$$
S(\sigma_n) = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} = \sum_{j=0}^{n} \binom{n}{j} - 2 \sum_{j=0}^{n} \binom{n}{4j + 3} = 2^n - 2 \sum_{j=0}^{n} \binom{n}{4j + 3}.
$$

Observe that when we divide $S(\sigma_n) / 2^n$ by the central binomial coefficient controls the contribution of the negative terms. We now do the analogous thing for $S_2(\sigma_n)$. Observe that

$$
S_2(\sigma_n) = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j}^2 = \sum_{j=0}^{n} \binom{n}{j}^2 - 2 \sum_{j=0}^{n} \binom{n}{4j + 3}^2 = \binom{2n}{n} - 2 \sum_{j=0}^{n} \binom{n}{4j + 3}^2.
$$

Therefore, it is now natural to see that dividing $S_2(\sigma_n)$ by the central binomial coefficient controls the contribution of the negative terms. Figure 1 is a graphical representation of this fact. The dots correspond to $S(\sigma_n) / (2^n)$. The line corresponds to $y = 1/2$.

![Figure 1. Graphical representation of $S_2(\sigma_n,3)/(2^n)$.](image)

It is clear now that $S_2(\sigma_n,3)$ increases faster than 2^n, but a bit slower than 4^n. Its behavior is somewhat similar to that of the central binomial coefficient and by Stirling’s formula we know that

$$
\binom{2n}{n} \sim \frac{4^n}{\sqrt{\pi n}}.
$$

Moreover, observe that

$$
\lim_{n \to \infty} \frac{1}{2^n} S_2(\sigma_n) = \frac{1}{2} = c_0(3).
$$

Equation (2.5) is not a coincidence, as we will show that $c_0(k_1, \cdots, k_s)$ appears in the behavior of $S_d(\sigma_n[k_1, \cdots, k_s])$. We are now ready to discuss the general case.
Let \(d \) be a non-negative integer. Define \(G(n, d) \) as the \(d \)-th order Franel number

\[
G(n, d) = \sum_{j=0}^{n} \binom{n}{j}^d.
\]

For \(d = 0, 1, 2 \), the value of \(G(n, d) \) is given by

\[
G(n, 0) = n + 1, \quad G(n, 1) = 2^n \quad \text{and} \quad G(n, 2) = \binom{2n}{n}.
\]

Sadly, there is not a nice closed formula for \(G(n, d) \) when \(d > 2 \). Instead, the value of \(G(n, d) \) is given by the hypergeometric function

\[
G(n, d) = F_{d-1}(-n, -n, \ldots, -n; 1, 1, \ldots, 1; (-1)^n).
\]

The asymptotic behavior of \(G(n, d) \) is already known (see [22]):

\[
G(n, d) \sim \frac{2^{dn}}{\sqrt{d}} \left(\frac{2}{\pi n} \right)^{\frac{d+1}{2}}.
\]

A formal proof of (2.9) was given by Farmer and Leth in [11]. A treatment for \(G(2n, d) \) using Euler’s summation formula and the tail-exchange trick appears in [15]. Also, a proper adjustment to the proof of Farmer and Leth leads to the following result.

Lemma 2.1. Let \(m \) and \(d \) be fixed natural numbers and \(i \) an integer such that \(0 \leq i \leq m \). Then, as \(n \) increases, we have

\[
\sum_{j=0}^{n} \binom{n}{mj+i}^d \sim \frac{2^{dn}}{m\sqrt{d}} \left(\frac{2}{\pi n} \right)^{\frac{d+1}{2}} \sim \frac{1}{m} G(n, d).
\]

With Lemma 2.1 at hand, we are now ready to provide the asymptotic behavior of \(S_d(\sigma_{n,[k_1,\ldots,k_s]}) \).

Theorem 2.2. Let \(d \) and \(k_1 < \cdots < k_s \) be fixed positive integers. Then,

\[
\lim_{n \to \infty} \frac{S_d(\sigma_{n,[k_1,\ldots,k_s]})}{G(n, d)} = c_0(k_1, \ldots, k_s).
\]

Proof. Let \(r = \lfloor \log_2(k_s) \rfloor + 1 \). Let \(i_1, \ldots, i_p \) be all the integers between 1 and \(2^r - 1 \) such that \(\binom{i}{k_1} + \cdots + \binom{i}{k_s} \equiv 1 \) (mod 2). It is known (see [5]) that the sequence \{ \{ \binom{n}{k_1} + \cdots + \binom{n}{k_s} \} \mod 2 \}_{n \in \mathbb{N}} \) is periodic and the period is a divisor of \(2^r \). Therefore, \(\binom{n}{k_1} + \cdots + \binom{n}{k_s} \equiv 1 \) (mod 2) if and only if \(i \equiv i_1 \) (mod \(2^r \)) for some \(i_1 \in \{i_1, \ldots, i_p\} \).

Using the definition of \(S_d(\sigma_{n,[k_1,\ldots,k_s]}) \) we observe that

\[
S_d(\sigma_{n,[k_1,\ldots,k_s]}) = G(n, d) - 2 \sum_{j=0}^{n} \left(\binom{n}{2r \cdot j + i_1}^d + \cdots + \binom{n}{2r \cdot j + i_p}^d \right).
\]

Therefore, as \(n \to \infty \), we have

\[
S_d(\sigma_{n,[k_1,\ldots,k_s]}) \sim G(n, d) - \frac{2p}{2^r} G(n, d) = (1 - p \cdot 2^{1-r}) G(n, d).
\]

It is not hard to show that \(c_0(k_1, \ldots, k_s) = 1 - p \cdot 2^{1-r} \). This concludes the proof. \(\square \)

Using the asymptotic behavior (2.9), we obtain the following corollary.

Corollary 2.3. Let \(d \) and \(k_1 < \cdots < k_s \) be a positive integer. Then,

\[
\lim_{n \to \infty} \frac{(\sqrt{n})^{d-1} \cdot S_d(\sigma_{n,[k_1,\ldots,k_s]})}{2^{dn}} = \frac{1}{\sqrt{d}} \left(\frac{2}{\pi} \right)^{\frac{d+1}{2}} c_0(k_1, \ldots, k_s).
\]

More generally, if \(Q(x) = a_0 + a_1 x + \cdots + a_t x^t \) is a polynomial and

\[
A_{Q(x)}(n) = a_0 \cdot (n+1) + a_1 \cdot 2^n + \frac{a_2}{\sqrt{2}} \left(\frac{2}{\pi \cdot n} \right)^{1/2} 2^{2n} + \cdots + \frac{a_t}{\sqrt{t}} \left(\frac{2}{\pi \cdot n} \right)^{(t-1)/2} 2^{tn},
\]
then,

\[(2.16) \lim_{n \to \infty} \frac{S_Q(x)(\sigma_n[k_1, \cdots, k_s])}{A_Q(x)(n)} = c_0(k_1, \cdots, k_s). \]

Proof. This is a direct consequence of Theorem 2.2 and the asymptotic behavior of \(G(n, d) \). \(\square \)

Example 2.4. Consider the case \(d = 4 \) and \(k = 7 \). We know that \(c_0(7) = \frac{3}{4} \). Thus,

\[(2.17) \frac{1}{\sqrt{d}} \left(\frac{2}{\pi} \right)^{d-1} c_0(k) = \frac{3}{8} \left(\frac{2}{\pi} \right)^{3/2} \approx 0.1904809078 \cdots. \]

Note that

<table>
<thead>
<tr>
<th>(n)</th>
<th>((\sqrt{n})^4 S_4(\sigma_n, 7) / 2^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1250000000</td>
</tr>
<tr>
<td>10</td>
<td>0.2280899652</td>
</tr>
<tr>
<td>100</td>
<td>0.2021752897</td>
</tr>
<tr>
<td>1000</td>
<td>0.1903737868</td>
</tr>
<tr>
<td>10000</td>
<td>0.1904701935</td>
</tr>
<tr>
<td>100000</td>
<td>0.1904798364</td>
</tr>
</tbody>
</table>

Example 2.5. Let \(k_1 = 2, k_2 = 3, k_3 = 4, \) and \(k_4 = 5 \). Consider the polynomial \(Q(x) = x^3 + 5x + 2 \). The reader can check that in this case we have

\[(2.18) A_Q(x)(n) \cdot c_0(2, 3, 4, 5) = \frac{1}{2} \left(5 \cdot 2^n + 2(n + 1) + \frac{n+1}{\sqrt{3\pi n}} \right). \]

Corollary 2.3 states that

\[(2.19) \lim_{n \to \infty} \frac{S_Q(x)(\sigma_n[2,3,4,5])}{A_Q(x)(n) \cdot c_0(2, 3, 4, 5)} = 1. \]

Figure 2 is a graphical representation of equation (2.19).

![Graphical representation of equation (2.19)](image)

Figure 2. Graphical representation of \(S_Q(x)(\sigma_n[2,3,4,5])/(A_Q(x)(n) \cdot c_0(2, 3, 4, 5)) \) when \(Q(x) = x^3 + 5x + 2 \).

We conclude this section with the observation that Theorem 2.2 and Corollary 2.3 imply that the constant \(c_0(k_1, \cdots, k_s) \) is universal in the sense that it appears in the asymptotic behavior of \(d \)-generalized exponential sums. Moreover, Theorem 2.2 is the natural generalization of limit (1.14). In the next section, we explore a generalization to recurrence (1.9).
3. Recurrence relations: Some experiments

In this section we discuss recurrence relations for the sequences \(\{S_d(\sigma_{n,[k_1,\ldots,k_r]})\}_{n \in \mathbb{N}} \). We already know that for \(d = 1 \), i.e., for \(\{S(\sigma_{n,[k_1,\ldots,k_r]})\}_{n \in \mathbb{N}} \), we have the homogeneous linear recurrence with constant coefficients

\[
(3.1) \quad a(n) = \sum_{m=1}^{2^r-1} (-1)^{m-1} \binom{2^r}{m} a(n-m),
\]

where \(r = \lfloor \log_2(k_s) \rfloor + 1 \). See [2, 5, 6] for more details. Experiments show that something similar happens for \(\{S_d(\sigma_{n,[k_1,\ldots,k_r]})\}_{n \in \mathbb{N}} \) when \(d > 1 \), i.e., these sequences satisfy linear recurrences. However, as we will see, the coefficients of these recurrences are no longer constant, instead, they are polynomials in \(n \). In other words, these sequences seem to be holonomic (this should not come as a surprise to the expert reader or to the reader aware of the work of Franel [12, 13] and Cusick [7] on power sums of binomial coefficients). Therefore, for \(d > 1 \), the problem of finding the minimal recurrence is a hard one. Once again, the reader is encouraged to open her favorite computer algebra system while reading this section.

To show the difficulty of the problem at hand, let us consider (once again) the rather simple example \(\{S_2(\sigma_{n,3})\}_{n \in \mathbb{N}} \). Note that

\[
(3.2) \quad S_2(\sigma_{n,3}) = \sum_{j=0}^{n} (-1)^{\binom{j}{2}} \binom{n}{j}^2 = \binom{2n}{n} - 2 \sum_{j=0}^{n} \binom{n}{4j+3}^2.
\]

We already know that the central binomial coefficient satisfies a linear recurrence with non-constant coefficients, i.e., it satisfies the recurrence

\[
(3.3) \quad (n+1)a(n+1) - (4n+2)a(n) = 0.
\]

Thus, it is natural to expect that if this sequence satisfies a linear recurrence, then the coefficients of the recurrence are non-constant.

In order to find such a recurrence, we emulate what we already know about the case \(d = 1 \). In that case, we have

\[
(3.4) \quad S(\sigma_{n,3}) = \sum_{j=0}^{n} (-1)^{\binom{j}{2}} \binom{n}{j} = 2^n - 2 \sum_{j=0}^{n} \binom{n}{4j+3}.
\]

The “negative” part of it, i.e., \(\sum_{j=0}^{n} \binom{n}{4j+3} \), satisfies the homogeneous recurrence

\[
(3.5) \quad a(n) = 4a(n-1) - 6a(n-2) + 4a(n-3).
\]

It is not hard to see that 2 is a root of the characteristic polynomial of recurrence (3.5) and so \(2^n \) also satisfies it. Thus, \(\{S(\sigma_{n,3})\}_{n \in \mathbb{N}} \) satisfies (3.5).

In general, if \(1 \leq k_1 < \cdots < k_s \) are integers, \(r = \lfloor \log_2(k_s) \rfloor + 1 \), and \(i_1, \cdots, i_p \) are all integers between 1 and \(2^r - 1 \) such that \(\binom{i_1}{k_1} + \cdots + \binom{i_p}{k_r} \equiv 1 \pmod{2} \), then

\[
(3.6) \quad S(\sigma_{n,[k_1,\ldots,k_r]}) = 2^n - 2 \sum_{j=0}^{n} \left(2^{rj+i_1} + \cdots + 2^{rj+i_p} \right),
\]

and the “negative” part of (3.6) satisfies (3.1). Since 2 is a root of the characteristic polynomial of (3.1), then \(2^n \), and therefore \(\{S(\sigma_{n,[k_1,\ldots,k_r]})\}_{n \in \mathbb{N}} \), satisfy (3.1).

Emulating what we did in the above paragraph, we start by looking for a recurrence for

\[
(3.7) \quad \sum_{j=0}^{n} \binom{n}{4j+3}.
\]

It is at this stage that we use the power of computers. This power, of course, is assisted by the ingenuity of a great mathematician, in this case, the great combinatorialist Doron Zeilberger [24]. Using Zeilberger’s Algorithm, which is already a built-in function in Maple and a version for Mathematica can be found in
we obtain (with an automated proof!) that (3.7) satisfies the homogeneous linear recurrence with non-constant coefficients

$$\sum_{j=0}^{7} p_j(n)a(n + j) = 0,$$

where the polynomials $p_j(n)$ can be found in Appendix A. Analogous to 2^n for $d = 1$, the central binomial coefficient satisfies (3.8). Thus, $\{S_2(\sigma_{n,k})\}_{n \in \mathbb{N}}$ satisfies (3.8).

More can be said. Zeilberger’s Algorithm also proves that the sequences $\{S_2(\sigma_{n,k})\}_{n \in \mathbb{N}}$ satisfy recurrences that are embedded. The answer is yes! Suppose that the sequence $\{a(n)\}$ is holonomic, this is, suppose that there exist polynomials $p_0(n), p_1(n), \cdots, p_l(n) \in \mathbb{C}[n]$ such that

$$p_l(n)a(n + l) + p_{l-1}(n)a(n + l - 1) + \cdots + p_0(n)a(n) = 0.$$

Let E be the shift operator that maps $a(n)$ to $a(n + 1)$. Equation (3.10) can be written as $A(E)(a(n)) = 0$ where

$$A(E) = \sum_{j=0}^{l} p_j(n)E^j.$$

The operator $A(E)$ is called an annihilating operator of the sequence $\{a(n)\}$. The number l is called the order of the annihilating operator. It is not hard to see that the set of all annihilating operators of $\{a(n)\}$ forms an ideal of the ring $\mathbb{C}[n][E]$.

Consider the sequence

$$a_{d,r,i}(n) = \sum_{j=0}^{n} \left(2^r j + i\right)^d.$$
Let $A_{d,r,i}(E) \in \mathbb{C}[n][E]$ be an annihilating operator for $\{a_{d,r,i}(n)\}$. Define
\begin{equation}
A_{d,r}(E) = \prod_{i=0}^{2^r-1} A_{d,r,i}(E).
\end{equation}

Since the set of all annihilating operators of a sequence $\{a(n)\}$ is an ideal, then $A_{d,r}(E)(a_{d,r,i}(n)) = 0$ for every r, d and i. Also, since
\begin{equation}
G(n,d) = \sum_{i=0}^{2^r-1} a_{d,r,i}(n),
\end{equation}
then $A_{d,r}(E)(G(n,d)) = 0$. Finally, if $r = \lfloor \log_2(k_s) \rfloor + 1$, then $S_d(\sigma_n,|k_1,\ldots,K_s|)$ is a linear combination of $G(n,d)$ and some terms $a_{d,r,i}(n)$, therefore
\begin{equation}
A_{d,r}(E)(S_d(\sigma_n,|k_1,\ldots,K_s|)) = 0
\end{equation}
and so the recurrences are embedded. To be specific, for every symmetric Boolean function of degree less than 4, the d-generalized exponential sum satisfies
\begin{equation}
A_{d,3}(E)(a(n)) = 0,
\end{equation}
for every symmetric Boolean function of degree less than 8, the d-generalized exponential sum satisfies
\begin{equation}
A_{d,3}(E)(a(n)) = 0,
\end{equation}
and so on.

We finish this section by noticing that the recurrences included in this work are not necessarily the minimal ones. For instance, we know that $\{S_2(\sigma_{n,2})\}_{n \in \mathbb{N}}$ satisfies (3.8). However, using the Mathematica implementation GuessMinRE, which is part of the package Guess.m written by Manuel Kauers [18], we guess that $\{S_2(\sigma_{n,2})\}_{n \in \mathbb{N}}$ satisfies the recurrence
\begin{equation}
\sum_{j=0}^{4} q_j(n)a(n + j) = 0,
\end{equation}
where
\begin{align*}
q_0(n) &= 424 + 924n + 692n^2 + 216n^3 + 24n^4 \\
q_1(n) &= 1280 + 2352n + 1576n^2 + 456n^3 + 48n^4 \\
q_2(n) &= 1600 + 2780n + 1756n^2 + 480n^3 + 48n^4 \\
q_3(n) &= -960 - 1604n - 968n^2 - 252n^3 - 24n^4 \\
q_4(n) &= 276 + 449n + 263n^2 + 66n^3 + 6n^4.
\end{align*}
This has been checked for values of n up to 20000.

Acknowledgments. The second author was partially supported as a student by NSF-DUE 1356474 and the Mellon-Mays Undergraduate Fellowship. The third author acknowledges the partial support of UPR-FIPI 1890015.00.

References

Appendix A. The polynomials

Here is the list of the polynomials that appeared in recurrence (3.8).

\[p_0(n) = -32(n+1)(n+2)(n+3)(2n+1)(188190n^{12} + 9033120n^{11} + 196636077n^{10} + 2566037664n^9 + 22348696113n^8 + 136791233640n^7 + 603010089167n^6 + 1927684790736n^5 + 4431569315045n^4 + 7137840911112n^3 + 7636521367520n^2 + 4865003749056n + 1392924147120), \]

\[p_1(n) = -16(n+2)(n+3)(1317330n^{14} + 65866500n^{13} + 1503857169n^{12} + 20760892182n^{11} + 193371382152n^{10} + 1283668382640n^9 + 6252417962213n^8 + 22652074875974n^7 + 61181104559648n^6 + 122185617069632n^5 + 17878878018528n^4 + 7356872337408, \]

\[p_2(n) = -8(n+3)(2634660n^{15} + 138319650n^{14} + 3337046838n^{13} + 49041351981n^{12} + 49055868334n^{11} + 35344030757549n^{10} + 189254454265784n^9 + 7658242131755n^8 + 23570256206054n^7 + 550556663096637n^6 + 965306173020288n^5 + 1242997361826972n^4 + 1132032127856288n^3 + 683206915638848n^2 + 24142285204352n + 36863441565696), \]

\[p_3(n) = 12796920n^{16} + 716627520n^{15} + 18563791716n^{14} + 295112721744n^{13} + 3220359021324n^{12} + 25558279911144n^{11} + 152466165457756n^{10} + 696597588898664n^9 + 2460180175868028n^8 + 6727570305322824n^7 + 14168212166929344n^6 + 26948897666807936n^5 + 12986387671524864n^4 + 4357597993118208n^3 + 1858657952477388, \]

\[p_4(n) = -8(n+4)(1317330n^{15} + 69159825n^{14} + 1668711609n^{13} + 45266165457756n^{12} + 4941351981n^{11} + 35344030757549n^{10} + 189254454265784n^9 + 7658242131755n^8 + 23570256206054n^7 + 550556663096637n^6 + 965306173020288n^5 + 1242997361826972n^4 + 1132032127856288n^3 + 683206915638848n^2 + 24142285204352n + 36863441565696), \]

\[p_5(n) = 4(n+4)(n+5)(1317330n^{14} + 63231840n^{13} + 1384074234n^{12} + 18296400375n^{11} + 163026294858n^{10} + 1034562798552n^9 + 4815246657374n^8 + 166698298030663n^7 + 4303900926144n^6 + 82236944277106n^5 + 114039899423372n^4 + 110702924553784n^3 + 70554744207312n^2 + 26093788468416n + 4129721936640), \]
\[p_6(n) = -2(n + 4)(n + 5)(n + 6)(752760n^{13} + 31992300n^{12} + 614915028n^{11}
+ 7072175655n^{10} + 54248839002n^9 + 292721588649n^8
+ 1141262961932n^7 + 3248405599701n^6 + 6731284085834n^5
+ 9991172562507n^4 + 10269147791108n^3 + 6865066373604n^2
+ 2640183959808n + 430545736512), \]

\[p_7(n) = (n + 4)(n + 5)(n + 6)(n + 7)(188190n^{12} + 6774840n^{11} + 109692297n^{10}
+ 1055096694n^9 + 670566952n^8 + 29614574520n^7 + 92981943365n^6
+ 208505889066n^5 + 330097304336n^4 + 357775867560n^3 + 249852405824n^2
+ 99544056672n + 16674683904). \]