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Abstract. We showed that, under certain conditions, restricted and biased exponential sums and
Walsh transforms of symmetric and rotation symmetric Boolean functions are, as in the case of non-
biased domain, C-finite sequences. We also showed that under other conditions, these sequences are
P -recursive, which is a somewhat different behavior than their non-biased counterparts. We also
show that exponential sums and Walsh transforms of a family of rotation symmetric monomials
over the restricted domain En,j = {x ∈ Fn2 : wt(x) = j} (wt(x) is the weight of the vector x) are
given by polynomials of degree at most j, and so, they are also C-finite sequences. Finally, we also
present a study of the behavior of symmetric Boolean functions under these biased transforms.

1. Introduction

An n-variable Boolean function is a function from Fn2 → F2 where F2 represents the field of two
elements and Fn2 is the vector space of dimension n over F2. These functions have application to
different scientific fields like coding theory, cryptography and information theory. The set of all
n-variables Boolean functions is usually denoted by Bn.

A Boolean function f ∈ Bn can be regarded as a multi-variable polynomial called the algebraic
normal form (or ANF for short) of f . To be specific, f can be viewed as

f(X1, . . . , Xn) = a0 ⊕
∑

1≤i≤n
aiXi ⊕

∑
1≤i<j≤n

aijXiXj ⊕ · · · ⊕ a12···nX1X2 · · ·Xn,

where a0, ai, aij , . . . , a12···n ∈ F2 and ⊕ represents addition modulo 2. The algebraic degree of a
Boolean function f is the degree of its ANF representation. The Hamming weight of a vector
x = (x1, . . . , xn) ∈ Fn2 , which is usually denoted by wt(x), is the number of 1’s in x.

The (unnormalized) Walsh transform at a ∈ Fn2 of f ∈ Bn is defined as the real valued function

Wf (a) =
∑
x∈Fn2

(−1)f(x)⊕a·x,

where a·x represents the usual scalar product. We sometimes encounter in literature this transform
normalized by the factor 2−n/2. The nonlinearity of a Boolean function f ∈ Bn is the distance from
f to the set of affine functions in n variables,

nl(f) = min
g affine

dist(f, g),

where dist(f, g) is the Hamming distance (number of bits where they differ) between f and g. The
spectral amplitude of a Boolean function f , denoted by Spec(f), is defined by

Spec(f) = max
a∈Fn2

|Wf (a)|.
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The spectral amplitude of a Boolean function is related to its nonlinearity via the equation

nl(f) = 2n−1 − 1

2
Spec(f).

Highly nonlinear Boolean functions are desirable in some cryptographic applications. Boolean
functions with the highest nonlinearity, i.e. 2n−1 − 2n/2−1 (n even) are known as bent functions.
These functions were introduced in the mid 1960’s in [27]. Observe that an n-variable Boolean
function f is bent if

1

2n/2
|Wf (a)| = 1, for all a ∈ Fn2 .

Another desirable property in cryptographic applications is balancedness. Order the elements of
Fn2 lexicographically and denote x0 = (0, 0, . . . , 0, 0), x1 = (0, 0, . . . , 0, 1), . . ., x2n−1 = (1, 1, . . . , 1, 1).
The truth table of a Boolean function f ∈ Bn is the vector [f(x0), f(x1), . . . , f(x2n−1)]. A Boolean
function f is said to be balanced if the number of 0’s and the number of 1’s in its true table are the
same, that is, wt(f) = 2n−1 (wt(f) is the Hamming weight of f ’s truth table).

Balancedness of Boolean functions is often studied from the point of view of exponential sums.
The exponential sum of a Boolean function f ∈ Bn is defined as

S(f) =
∑
x∈Fn2

(−1)f(x).

Observe that the exponential sum of a Boolean function coincides with its Walsh transform at
a = 0, that is, S(f) = Wf (0). Also, a Boolean function f is balanced if and only if S(f) = 0. For
a comprehensive study of Boolean functions, please refer to [2, 5, 18].

Balancedness of some special classes of Boolean functions, like symmetric and rotation symmetric
Boolean functions, have been extensively studied and are an active area of research [1, 4, 7, 8, 9,
14, 15, 16, 17, 19, 21, 24, 28, 29]. A Boolean function f ∈ Bn is symmetric if it is fixed under the
action of the symmetric group Sn of n symbols, that is, if

f(Xσ(1), . . . , Xσ(n)) = f(X1, . . . , Xn), for every σ ∈ Sn.
It is a well-established result that every symmetric Boolean function f ∈ Bn can be identified with
an expression of the form

(1.1) f = en,k1 ⊕ · · · ⊕ en,ks ,

where 0 ≤ k1 < k2 < · · · < ks are integers and en,k represents the n-variable elementary symmetric
polynomial of degree k. For simplicity, we denote the linear combination on the right-hand side
of (1.1) as en,[k1,...,ks]. Symmetric Boolean functions are useful in efficient implementations (thanks
to their symmetry), however, they may be vulnerable to attacks.

A Boolean function f ∈ Bn is rotation symmetric if it is fixed under the action of the cyclic group
Cn of n elements, that is, if

f(Xσ(1), . . . , Xσ(n)) = f(X1, . . . , Xn), for every σ ∈ Cn.
Rotation symmetric Boolean functions where introduced by Pieprzyk and Qu [26] (although, they
did appear before in the work of Filiol and Fontaine [20] as idempotents). As in the case of
symmetric Boolean functions, these functions have efficient implementations. However, Pieprzyk
and Qu showed that these functions are useful, among other things, in the design of fast hashing
algorithms with strong cryptographic properties. Let 1 < j1 < · · · < js be integers. A rotation
symmetric Boolean function of the form

Rn,[j1,...,js] = X1Xj1 · · ·Xjs ⊕X2Xj1+1 · · ·Xjs+1 ⊕ · · · ⊕XnXj1−1 · · ·Xjs−1,

where the indices are taken modulo n and the complete system of residues mod n is {1, 2, . . . , n},
is called a monomial rotation symmetric Boolean function on n variables. We say that Rn,[j1,...,js]
is a long cycle if the period is n and a short cycle, if the period is a nontrivial divisor of n (we then
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make the convention in the above displayed equation that we stop “shifting” indices if we encounter
one of the previous terms, otherwise a short cycle would always sum to 0). The function

R5,[2,3] = X1X2X3 ⊕X2X3X4 ⊕X3X4X5 ⊕X4X5X1 ⊕X5X1X2

is an example of a long cycle, while

R4,[3] = X1X3 ⊕X2X4

is an example of a short cycle.
It is known that under certain conditions, exponential sums and Walsh transforms of symmetric

Boolean functions and rotation symmetric Boolean functions are C-finite sequences [3, 7, 8, 10, 12,
13, 16, 17]. We say that a sequence {a(n)} of real numbers satisfies a homogeneous linear recurrence
with constant coefficients, or that it is C-finite, if there is a positive integer d and some constants
c0, . . . , cd ∈ R, with cd 6= 0, such that

(1.2)
d∑
`=0

c` a(n+ `) = 0.

Many classical sequences, like Fibonacci and Lucas numbers, are defined by this type of recurrences.
C-finite sequences are well-understood: solutions to a recurrence relation of type (1.2) are tied to
roots of a polynomial called the characteristic polynomial of the relation.

We say that a sequence {a(n)} satisfies a homogeneous linear recurrence with polynomial coeffi-
cients, or that it is holonomic or P -recursive, if there is a positive integer d and some polynomials
p0(n), . . . , pd(n), with pd(n) not identically zero, such that

d∑
`=0

p`(n) a(n+ `) = 0.

Classical examples of P -recursive sequences include the factorial sequence {n!}, which satisfies

a(n+ 1)− (n+ 1)a(n) = 0,

the central binomial coefficients
(

2n
n

)
, which satisfy

(n+ 1)a(n+ 1)− (4n+ 2)a(n) = 0,

and the Motzkin numbers

Mn =

bn/2c∑
k=0

1

k + 1

(
n

2k

)(
2k

k

)
,

which satisfy

(n+ 4)a(n+ 2)− (2n+ 5)a(n+ 1)− (3n+ 3)a(n) = 0.

It is clear that every C-finite sequence is P -recursive, but not the other way around. P -recursive
sequences were introduced (formally) by Stanley [30]. There are various celebrated results in this
area of mathematics, and we mention here Zeilberger’s Algorithm [32], as a famous example. A
great read about P -recursive sequences is [31].

In [3, 7] it was shown that exponential sums of symmetric Boolean functions are C-finite. To be
specific, if 1 ≤ k1 < · · · < ks are integers and r = blog2(ks)c+ 1, then {S(en,[k1,...,ks])} satisfies the
recurrence

a(n) =
2r−1∑
j=1

(−1)j−1

(
2r

j

)
a(n− j),

whose characteristic polynomial is given by

(X − 2)Φ4(X − 1)Φ8(X − 1) · · ·Φ2r(X − 1).
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This result was later extended to exponential sums of perturbations of them in [8], to their Walsh
transforms in [12] and to finite fields beyond F2 in [10, 11].

In [13], Cusick showed that weights (equivalent to exponential sums) of rotation symmetric
Boolean functions are also C-finite. This was later extended to Walsh transforms of these [12] and
to other finite fields [10]. In the case of [10], their results were obtained using auxiliary functions
which they called trapezoid function. These functions are defined as

Tn,[j1,...,js] = X1Xj1 · · ·Xjs⊕X2Xj1+1 · · ·Xjs+1⊕ · · ·⊕Xn+1−jsXj1+n−js · · ·Xjs−1+n−jsXn.

Observe that Tn,[j1,...,js] is the expression before the rotation part of Rn,[j1,...,js].
In this article, we show that some of these results can be extended to both classes of Boolean

functions over restricted and biased domains. Let f ∈ Bn and E ⊂ Fn2 . Define the (scaled) restricted
exponential sum of f over E as

S(f ;E) =
∑
x∈E

(−1)f(x).

Similarly, define the (scaled) restricted Walsh transform of f over E at a as

Wf (a;E) =
∑
x∈E

(−1)f(x)⊕a·x.

Boolean functions over restricted domains have been a subject of study recently [6, 22, 23, 25],
especially in the context of the FLIP cipher. In general, when working over restricted domains, the
distribution is non-uniform, and the cryptographic properties of the involved Boolean function may
change significantly. In [22], the concepts of biased exponential sum and biased Walsh transform
of a Boolean function were introduced. Let p(u) be a probability distribution on Fn2 . If f ∈ Bn and
a ∈ Fn2 , then the biased Walsh transform of f at a is defined as

WB
f (a; p) =

∑
x∈Fn2

p(x)(−1)f(x)⊕a·x.

We are mostly interested in the biased exponential sum of f as defined by

SB(f ; p) =
∑
x∈Fn2

p(x)(−1)f(x).

(Observe that SB(f ; p) = WB
f (0; p).)

In this article, we show that, under certain conditions, restricted and biased exponential sums
and Walsh transforms of symmetric and rotation symmetric Boolean functions are, as is the case of
non-biased domain, C-finite sequences. However, we also show that under some other conditions,
these sequences are P -recursive. This is a different behavior than their non-biased counterparts.
In Section 3 we show that exponential sums of a family of rotation monomials over the restricted
domain En,k = {x ∈ Fn2 : wt(x) = j} is given by a polynomial of degree j + 1. That implies that
they are also C-finite sequences. Finally, in the last section, we study the behavior of symmetric
Boolean functions under these biased transforms.

2. Recurrences over biased domains

As in the case of regular exponential sums and Walsh transforms, under certain conditions, biased
exponential sums and biased Walsh transforms are C-finite sequences. That is the case when the
probability distribution depends only on the first entry of x ∈ Fn2 and the argument is somewhat
simple.

Let α ∈ R be algebraic such that

αn,
1

2n−1
− αn ∈ (0, 1),



P -RECURSIVITY OF SOME FAMILIES BOOLEAN FUNCTIONS 5

for every integer n ≥ 1. Define, for x = (x1, . . . , xn) ∈ Fn2 , the probability distribution

(2.1) pα(x) =

{
αn, x1 = 0

1
2n−1 − αn, x1 = 1

and consider the biased exponential sum

SB(f ; pα) =
∑
x∈Fn2

pα(x)(−1)f(x).

Suppose that fn ∈ Bn is such that the sequences ∑
x∈Fn−1

2

(−1)fn(0,x)


n

and

 ∑
x∈Fn−1

2

(−1)fn(1,x)


n

satisfy linear recurrences with constant coefficients whose characteristic polynomials are given by
q0(X) and q1(X), respectively. Suppose that β1, . . . , βj are the roots of q0(X) and γ1, . . . , γr are
the roots of q1(X). Then,∑

x∈Fn−1
2

(−1)fn(0,x) =

j∑
`=1

a`(n)βn` and
∑

x∈Fn−1
2

(−1)fn(1,x) =

r∑
s=1

bs(n)γns ,

where a`(n) and bs(n) are some polynomials in n. Observe that

SB(fn; pα) =
∑
x∈Fn2

pα(x)(−1)f(x)

=
∑

x∈Fn−1
2

pα(0,x)(−1)f(0,x) +
∑

x∈Fn−1
2

pα(1,x)(−1)f(1,x)

= αn
∑

x∈Fn−1
2

(−1)f(0,x) +

(
1

2n−1
− αn

) ∑
x∈Fn−1

2

(−1)f(1,x)

= αn
j∑
`=1

a`(n)βn` +

(
1

2n−1
− αn

) r∑
s=1

b`(n)γns

=

j∑
`=1

a`(n)(αβ`)
n +

r∑
s=1

2b`(n)
(γs

2

)n
−

r∑
s=1

b`(n)(αγs)
n.

That implies that {SB(fn; pα)} satisfies linear recurrences with constant coefficients, that is, it is
a C-finite sequence. In the particular case when deg(as) = deg(bt) = 0 for all s, t, i.e., when q0(X)
and q1(X) do not have repeated roots, {SB(fn; pα)} satisfies the recurrence whose characteristic
polynomial is given by

lcm
(
µαβ1(X), . . . , µαβj (X), µαγ1(X), . . . , µαγr(X), µ γ1

2
(X), . . . , µ γr

2
(X)

)
,

where µω(X) represents the minimal polynomial of the algebraic number ω.
Several known families of Boolean functions satisfy the above argument. That includes symmetric

Boolean functions, trapezoid Boolean functions, rotation symmetric Boolean functions and linear
combinations and concatenations of them (degree fixed). Moreover, in the case of those families,
the argument can be extended to perturbations without too much effort. Suppose that fn ∈ Bn
is either symmetric, trapezoid, rotation symmetric or a linear combination or concatenation of
symmetric and rotation symmetric Boolean functions. Let j < n be a fixed positive integer and
F ∈ Bj . The function fn(X) ⊕ F (X) is called a perturbation of fn. If {SB(fn; p)} satisfies the
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above discussion, then, using the same technique presented in [8], so does {SB(fn ⊕ F ; p)}. This,
in turns, implies that the same argument holds true if we replace SB(fn; p) by the biased Walsh
transform WB

fn
(a; p) (same conditions on a as in [12]).

Observe that the argument can be extended further if the probability depends on more than one
entry. For instance, if α1, α2, α3 ∈ R are algebraic numbers such that

αn1 , α
n
2 , α

n
3 ,

1

2n−2
− αn1 − αn2 − αn3 ∈ (0, 1),

for all positive integer n, and define, for x = (x1, x2, . . . , xn) ∈ Fn2 , the probability distribution

p(x) =


αn1 , x1 = 0, x2 = 0

αn2 , x1 = 0, x2 = 1

αn3 , x1 = 1, x2 = 0
1

2n−2 − αn1 − αn2 − αn3 , x1 = 1, x2 = 1,

then the same argument follows by requiring the corresponding four partial sums to be linear
recurrent. Having said that, for simplicity, we summarize the discussion when the probability
depends on only one entry.

Theorem 2.1. Suppose that fn ∈ Bn is one of the following

(1) en,[k1,...,ks] (ki fixed)
(2) Tn, [j1,...,js] (ji fixed)
(3) Rn, [j1,...,js] (ji fixed)
(4) a linear combination or concatenation of the previous three.

Suppose that a ∈ Fj2 is fixed and that pα(x) is defined as in (2.1). Then {WB
fn

(a; pα)} satisfies a
linear recurrence with constant coefficients.

Example 2.2. Consider the elementary symmetric Boolean polynomial en,3 and the rotation sym-
metric Boolean polynomial

Rn,[2,3] = X1X2X3 ⊕X2X3X4 ⊕ · · · ⊕Xn−2Xn−1Xn ⊕Xn−1XnX1 ⊕XnX1X2.

Let fn(Y,X1, . . . , Xn) ∈ Bn+1 be the concatenation of Rn,[2,3] and en,3, i.e

fn(Y,X) = (1⊕ Y )Rn,[2,3](X)⊕ Y en,3(X).

If x = (x1, . . . , x`) ∈ F`2, then let

p(x) =


(

1√
5

)`
, x1 = 0

1
2`−1 −

(
1√
5

)`
, x1 = 1.

Consider the sequence
{
WB
fn

(0; p)
}

=
{
SB(fn; p)

}
. Observe that∑

x∈Fn2

(−1)fn(0,x)

 =

∑
x∈Fn2

(−1)Rn,[2,3](x)

 .(2.2)

We know that the right-hand side of (2.2) satisfies the homogeneous linear recurrence whose char-
acteristic polynomial is given X3 − 2X − 2 (see [10, 13]). Also∑

x∈Fn2

(−1)fn(1,x)

 =

∑
x∈Fn2

(−1)en,3(x)

 ,(2.3)
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and again, we know that the right-hand side satisfies a homogeneous linear recurrence, i.e., the one
whose characteristic polynomial is given by (X − 2)(X2− 2X − 2) (see [7]). Therefore, {SB(fn; p)}
satisfies a linear recurrence with integer coefficients.

If we want to calculate an explicit recurrence, then we must study the roots of the polynomials
associated to (2.2) and (2.3). The polynomial X3−2X−2, which is associated to (2.2), is irreducible
over Q, and let β represents one of its roots. The roots of (X − 2)(X2− 2X − 2) are 2, 1± i. Thus,
we must find the minimal polynomials of

β√
5
,

2√
5
,

1± i√
5
, 1,

1± i
2

.

These polynomials are given by

µ β√
5

(X) = 125X6 − 100X4 + 20X2 − 4,

µ 2√
5
(X) = 5X2 − 4,

µ 1±i√
5

(X) = 25X4 + 4,

µ1(X) = X − 1,

µ 1±i
2

(X) = 2X2 − 2X + 1,

and the least common multiple of them is their product, i.e.

Q(X) = (X − 1)
(
2X2 − 2X + 1

) (
5X2 − 4

)
×
(
25X4 + 4

) (
125X6 − 100X4 + 20X2 − 4

)
.

This implies that {SB(fn; p)} satisfies that linear recurrence whose characteristic polynomial is Q,
in other words, Q(E)(SB(fn; p)) = 0, where E represents the shift operator, i.e., E(an) = an+1.

There are other cases on which biased exponential sums of symmetric and rotation symmetric
Boolean functions are C-finite. A similar behavior is exhibit by symmetric Boolean functions when
the probability distribution depends on the weight of x ∈ Fn2 .

Suppose that α ∈ R is an algebraic number and 0 < j < n be such that

αn,
1− αn

(
n
j

)
2n −

(
n
j

) ∈ (0, 1)

for all n ≥ 1. Define, for x ∈ Fn2 , the probability distribution

(2.4) p(j)
α (x) =

α
n, wt(x) = j,

1−αn(nj)
2n−(nj)

, otherwise.

When j is fixed, the scaled biased exponential sum{(
2n −

(
n

j

))
SB
(
en,k; p

(j)
α

)}
is C-finite. The argument for the proof of this claim is somewhat similar to the previous one.
However, when the weight j is not fixed, we still get recurrences, but the coefficients are no longer
constants. Instead, they are polynomials in n. In other words, the sequences are holonomic or
P -recursive. We show an example of the last claim.

Let A(n) = 22n −
(

2n
n

)
, Lk,α(n) = A(n)SB

(
e2n,k; p

(n)
α

)
and consider the sequence {Lk,α(n)}n.

Observe that

Lk,α(n) = A(n)
∑

x∈F2n
2

p(n)
α (x)(−1)e2n,k(x)
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= α2nA(n)
∑

wt(x)=n

(−1)e2n,k(x) +

(
1− α2n

(
2n
n

)
22n −

(
2n
n

) )A(n)
∑

wt(x)6=n

(−1)e2n,k(x)

= (−1)(
n
k)α2nA(n)

(
2n

n

)
+

(
1− α2n

(
2n

n

)) 2n∑
`=0,` 6=n

(−1)(
`
k)
(

2n

`

)
.

Since (−1)(
n
k) and α2n are C-finite and A(n) and

(
2n
n

)
are P -recursive, the terms

(−1)(
n
k)α2nA(n)

(
2n

n

)
and 1− α2n

(
2n

n

)
are P -recursive. On the other hand,

2n∑
`=0,` 6=n

(−1)(
j
k)
(

2n

j

)
=

2n∑
`=0

(−1)(
j
k)
(

2n

j

)
− (−1)(

n
k)
(

2n

n

)
.(2.5)

The first term on the right-hand side of (2.5) is C-finite and we already know that the second term
is P -recursive. Since the sum and product of P -recursive sequences is P -recursive, {Lk,c,α(n)} is
P -recursive. An explicit formula for its recursion can be obtained using Zeilberger’s Algorithm [32].

There are other instances for which we obtain P -recursive sequences, but the argument is similar
to the one presented. Of course, for general probability distributions, we might not get recursions.
In the next section we show that something similar happens for some restricted domains.

3. Recurrences over restricted domain

Boolean functions over restricted domains have been a subject of study recently. In particular,
some cryptographic applications have been found over the restricted domain En,j = {x ∈ Fn2 :
wt(x) = j}, see [6, 22, 25]. When E = En,j , we relabel the restricted exponential sum and the

restricted Walsh transform as S(j)(f) and W
(j)
f (a), respectively.

The study of symmetric Boolean functions over the restricted domain En,j is rather simple. In
that case, the scaled restricted exponential sum is given by

S(j)(en,k) = (−1)(
j
k)
(
n

j

)
.

Thus, it is given by a polynomial in n of degree j and so it satisfies the linear recurrence whose
characteristic polynomial is given by

(X − 1)j+1.

In this section we will show that a similar behavior is exhibited by Rn,[2,3,...,k] ∈ Bn, that is,

S(j)(Rn,[2,3,...,k]), for n ≥ j + k, is given by a polynomial in n variables of degree j.
We start with trapezoid functions, which were introduced in [10]. Recall that if j1 < · · · < js are

positive integers, then the trapezoid function is defined by

Tn,[j1,...,js] = X1Xj1 · · ·Xjs⊕X2Xj1+1 · · ·Xjs+1⊕ · · ·⊕Xn+1−jsXj1+n−js · · ·Xjs−1+n−jsXn.

Consider the restricted exponential sum S(j)(Tn,[2,...,k]). Assign first the value 0 and then the value
1 to Xn. Doing that produces

S(j)(Tn,[2,...,k]) = S(j)(Tn−1,[2,...,k]) + S(j−1)(Tn−1,[2,...,k]⊕Xn−k+1 · · ·Xn−1).

The process of assigning values to a variable Xj was referred [10] as turning the variable OFF and
ON. Now turn OFF and ON the variable Xn−1 to get

S(j−1)(Tn−1,[2,...,k]⊕Xn−k+1 · · ·Xn−1)

=S(j−1)(Tn−2,[2,...,k]) + S(j−2)(Tn−2,[2,...,k]⊕Xn−k+1 · · ·Xn−2⊕Xn−k · · ·Xn−2).
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Continuing with this process (as in [10]) we get

S(j)(Tn,[2,...,k]) = S(j)
(
Tk+1,[2,...,k]

)
(3.1)

+
n−2k+3∑
`=2

k−2∑
s=1

S(j−s) (Tn+1−s−`,[2,...,k]

)
+

j−2k+1∑
`=0

(−1)`
n−k−`∑
s=k

S(j−k+1−`) (Tn−s−`,[2,...,k]

)
.

Equation (3.1) holds for S(j)(Tn,[2,...,k] ⊕ F (X)) when F (X) is a Boolean polynomial in the first
r < k variables. With this information at hand, we are ready to prove the next series of results.
These results use the restricted support of a Boolean function, which is defined as

suppn,j(f) = {x ∈ En,j : f(x) = 1}.
It is not hard to see that, if f1 and f2 are Boolean functions, then the principle of inclusion and
exclusion leads to∣∣suppn,j(f1 ⊕ f2)

∣∣ =
∣∣suppn,j(f1)

∣∣+
∣∣suppn,j(f2)

∣∣− 2
∣∣suppn,j(f1) ∩ suppn,j(f2)

∣∣ .
Lemma 3.1. Let n, j and r be positive integers. Suppose that n ≥ j ≥ r and let f ∈ Br be a
polynomial. Then,

∣∣suppn,j(f)
∣∣ is given by a polynomial in n of degree at most j.

Proof. We will prove the result for f of the form Xi1 · · ·Xis ⊕Xh1 · · ·Xh` , where

{i1, . . . , is} ∪ {h1, . . . , h`} = {1, 2, . . . , r}.
The general case follows a similar argument.

Let f1 = Xi1 · · ·Xis and f2 = Xh1 · · ·Xh` , so that f = f1 ⊕ f2 and

(3.2)
∣∣suppn,j(f)

∣∣ =
∣∣suppn,j(f1)

∣∣+
∣∣suppn,j(f2)

∣∣− 2
∣∣suppn,j(f1) ∩ suppn,j(f2)

∣∣ .
Observe that f1 returns 1 if and only if the value of each of the variables Xi1 , . . . , Xis is 1. Therefore,
if x ∈ En,j , then f1(x) = 1 if and only if the entries of x at the i1, . . . , is positions are 1. That means
that the other n− s entries of x are free and we need to position j − s ones on them. Therefore,

(3.3)
∣∣suppn,j(f1)

∣∣ =

(
n− s
j − s

)
.

Similarly,

(3.4)
∣∣suppn,j(f2)

∣∣ =

(
n− `
j − `

)
.

Finally, x ∈ En,j is in suppn,j(f1) ∩ suppn,j(f2) if and only if its first r entries are 1. Therefore,

(3.5)
∣∣suppn,j(f1) ∩ suppn,j(f2)

∣∣ =

(
n− r
j − r

)
.

Together, equations (3.2), (3.3), (3.4) and (3.5) imply∣∣suppn,j(f)
∣∣ =

(
n− s
j − s

)
+

(
n− s
j − `

)
− 2

(
n− r
j − r

)
,

which is a polynomial in n of degree at most j. The general case follows similarly. �

Lemma 3.2. Let k ≥ r be fixed integers and n be any integer such that n ≥ 2k − 1. Suppose that
F (X) is a Boolean polynomial in the first r variables of Tn;[2,3,...,k]. Then,∣∣suppn,k(Tn,[2,3,...,k]) ∩ suppn,k(F )

∣∣
is constant.
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Proof. Recall that

Tn,[2,...,k] = X1X2 · · ·Xk⊕X2X3 · · ·Xk+1⊕ · · ·⊕Xn−k+1Xn−k+2 · · ·Xn.

Therefore, if u has weight k, then Tn,[2,...,k](u) = 1 if an only if exactly one of its terms is 1. Thus,
it is clear that if

u
(n)
` = (0, · · · , 0︸ ︷︷ ︸

`−1

, 1, · · · , 1︸ ︷︷ ︸
k

, 0, · · · , 0︸ ︷︷ ︸
n−k−`+1

), 1 ≤ ` ≤ n− k + 1,

then
suppn,k(Tn,[2,3,...,k]) =

{
u

(n)
1 ,u

(n)
2 , . . . ,u

(n)
n−k+1

}
.

By assumption, the polynomial F (X) is formed by adding terms of the form Xi1 · · ·Xit with
i1 < · · · < it ≤ r (remember that r ≤ k). Let us study

suppn,k(Tn,[2,3,...,k]) ∩ suppn,k(Xi1 · · ·Xit).

Observe that Xi1 · · ·Xit returns 1 at u
(n)
` if and only if the entries of u

(n)
` at positions i1, . . . , it

are all 1. By hypothesis on n, only on the vectors u
(n)
1 ,u

(n)
2 , . . . ,u

(n)
is

the number 1 appears as the
entry at position is. Therefore,∣∣suppn,k(Tn,[2,3,...,k]) ∩ suppn,k(Xi1 · · ·Xit)

∣∣ = i1,

and so
∣∣suppn,k(Tn,[2,3,...,k]) ∩ suppn,k(Xi1 · · ·Xit)

∣∣ is constant. The general case follows by applying
the principle of inclusion and exclusion. �

Lemma 3.3. Let 1 < k ≤ j be integers. Suppose that F (X) is a Boolean polynomial in the first

r < k variables of Tn;[2,3,...,k]. Suppose that n > k + j − 1. Then S(j)(Tn,[2,3,...,k]⊕F (X)) is given

by a polynomial in n of degree at most j. In particular {S(j)(Tn,[2,3,...,k]⊕F (X))}n≥k+j satisfies the
homogeneous linear recurrence whose characteristic polynomial is given by

(X − 1)j+1.

Proof. The argument is by induction on j. Consider first S(k)
(
Tn,[2,...,k]⊕F (X)

)
. Note that

S(k)
(
Tn,[1,2,...,k]⊕F (X)

)
=

(
n

k

)
− 2

∣∣suppn,k(Tn,[1,2,...,k]⊕F (X))
∣∣ .

Recall that ∣∣suppn,k(Tn,[1,2,...,k]⊕F (X))
∣∣ =

∣∣suppn,k(Tn,[1,2,...,k])
∣∣+
∣∣suppn,k F (X))

∣∣(3.6)

− 2
∣∣suppn,k(Tn,[1,2,...,k]) ∩ suppn,k F (X))

∣∣ .
We know that

∣∣suppn,k(Tn,[1,2,...,k]⊕F (X))
∣∣ = n − k + 1. Lemma 3.1 implies that

∣∣suppn,k F (X))
∣∣

is a polynomial in n of degree at most k and Lemma 3.2 implies that∣∣suppn,k(Tn,[1,2,...,k]) ∩ suppn,k F (X))
∣∣

is constant. Therefore, (3.6) is a polynomial in n of degree at most k. Since
(
n
k

)
is a polynomial in

n of degree k, then it follows that S(k)(Tn,[1,2,...,k]⊕F (X)) is a polynomial in n of degree at most k.

Suppose that for an arbitrary j we have that S(i)(Tn,[2,...,k]⊕F (X)) is given by a polynomial on

n of degree at most i for every k ≤ i ≤ j − 1. Then, by (3.1), S(j)(Tn,[2,...,k]⊕F (X)) is given by a
polynomial in n variables of degree at most

deg

(
n−2k+3∑
l=2

k−2∑
s=1

S(j−s)(Tn+1−s−l,[2,...,k]⊕F (X))

)

= 1 + deg

(
k−2∑
s=1

S(j−s)(Tn+1−s−l,[2,...,k]⊕F (X))

)
≤ 1 + (j − 1) = j.
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This concludes the proof. �

Consider now the rotation symmetric monomial Rn,[2...,k]. Using the method of turning variables
OFF and ON yields

S(j)(Rn,[2,3,...,k]) = S(j)(Tn−1,[2,3,...,k]) +

k−2∑
i=1

S(j−i)

(
Tn−1−i,[2,3,...,k]⊕

i∑
l=1

k−l∏
s=1

Xs

)
+

j−2k+1∑
i=0

(−1)iS(j−k+1−i) (Tn−k−i,[2,3,··· ,k] ⊕ F (X)
)
,

(3.7)

where F (X) = X1⊕X1X2⊕X1X2 · · ·Xk−1. Putting together Lemma 3.3 and Equation (3.7), we
have the following result.

Theorem 3.4. Let j and k be fixed positive integers. Then S(j)(Rn,[2,3,...,k]), for n ≥ j+k, is given

by a polynomial in n of degree j. In particular, the sequence
{
S(j)

(
Rn,[2,3,...,k]

)}
n≥j+k is C-finite

and satisfies the homogeneous linear recurrence whose characteristic polynomial is given by

(X − 1)j+1.

Corollary 3.5. Let j and k be fixed positive integers. Suppose that F (X) is a polynomial in the

first r < k variables of Rn,[2,3,...,k]. Then S(j)(Rn,[2,3,...,k] + F (X)), for n ≥ j + k − 1, is given

by a polynomial in n of degree j. In particular, the sequence
{
S(j)

(
Rn,[2,3,...,k] + F (X)

)}
n≥j+k is

C-finite and satisfies the homogeneous linear recurrence whose characteristic polynomial is given
by

(X − 1)j+1.

Example 3.6. Consider the rotation symmetric Rn;[2,3,4]. According to Theorem 3.4, S(6)(Rn;[2,3,4])

is given by a polynomial of degree at most 6 (for n ≥ 4+6−1 = 9). In other words, S(6)(Rn;[2,3,4]) =
f(n) with

f(n) = a0 + a1n+ a2n
2 + a3n

3 + a4n
4 + a5n

5 + a6n
6.

Solving the system

f(9) = S(6)(R9;[2,3,4]) = 12

f(10) = S(6)(R10;[2,3,4]) = 70

f(11) = S(6)(R11;[2,3,4]) = 220

f(12) = S(6)(R12;[2,3,4]) = 540

f(13) = S(6)(R13;[2,3,4]) = 1144

f(14) = S(6)(R14;[2,3,4]) = 2191

f(15) = S(6)(R15;[2,3,4]) = 3895,

we find that

S(6)(Rn;[2,3,4]) =
n6

720
− n5

48
+

17n4

144
− 21n3

16
+

4817n2

360
− 265n

6
.

A similar behavior is exhibit by S(6)(Rn;[2,3,4] + X1X2 + X2X3), according to Corollary 3.5. In
this case,

S(6)(Rn;[2,3,4] +X1X2 +X2X3) =
n6

720
− n5

48
+

5n4

144
− 7n3

48
+

4847n2

360
− 316n

3
+ 234.
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Observe that Corollary 3.5 implies that W
(j)
Rn;[2,...,k]

(a), for n ≥ k + j − 1 and a ∈ Fr2 with r < k,

is also given by a polynomial in n of degree at most j. We will not state that result as a theorem,
as it is included in Corollary 3.5. Also, some adjustments to the argument can be used to prove
that we have the same behavior for other rotation symmetric Boolean functions. For example,

W
(7)
Rn;[2,3,5]

(a) =
n7

5040
− 7n6

720
+

133n5

720
− 305n4

144
+

4063n3

180
− 35527n2

180
+

30406n

35
− 1116,

where a = (1, 0, 1) and n ≥ 11.
In the next section we study the asymptotic behavior of biased exponential sums of symmetric

Boolean functions. We show that their behavior almost surely the same as the regular exponential
sum.

4. Asymptotic behavior for symmetric Boolean functions

In this section we study the asymptotic behavior of symmetric Boolean functions under biased
exponential sums. It turns out that this behavior is related to the behavior of the regular exponential
sum of symmetric Boolean functions. In [7], it is showed that

(4.1) lim
n→∞

1

2n
S(en,k) = c0(k)

where c0(k) is defined as (see [3])

(4.2) c0(k) =
1

2r

2r−1∑
j=0

(−1)(
j
k),

where r = blog2(k)c + 1. The constant c0(k) also appears in the behavior of symmetric Boolean
functions under biased exponential sums.

We start with the behavior of SB(en,k; p) when p(x) is defined by (2.4). Observe that the

conditions on (2.4) imply that α ≤ 1/2. Consider the case of SB(e2n,k; p), which is one of the cases
when j is not fixed (the case when j is fixed follows in a similar manner). Observe that

SB(e2n,k; p) =
∑

wt(x)=n

p(x)(−1)e2n,k(x) +
∑

wt(x)6=n

p(x)(−1)e2n,k(x)

= cα2n(−1)(
n
k)
(

2n

n

)
+

(
1−

(
2n
n

)
cα2n

22n −
(

2n
n

) ) 2n∑
j=0,j 6=n

(−1)(
j
k)
(

2n

j

)

= cα2n(−1)(
n
k)
(

2n

n

)
+

(
1−

(
2n
n

)
cα2n

22n −
(

2n
n

) )
 2n∑
j=0

(−1)(
j
k)
(

2n

j

)
− (−1)(

n
k)
(

2n

n

) .

The well-known inequality
4n√
4n
≤
(

2n

n

)
≤ 4n√

3n+ 1
,

implies

lim
n→∞

cα2n(−1)(
n
k)
(

2n

n

)
= 0.

Also,

lim
n→∞

(
1−

(
2n
n

)
cα2n

22n −
(

2n
n

) )
 2n∑
j=0

(−1)(
j
k)
(

2n

j

)
− (−1)(

n
k)
(

2n

n

)
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= lim
n→∞

(
1−

(
2n
n

)
cα2n

22n −
(

2n
n

) ) 2n∑
j=0

(−1)(
j
k)
(

2n

j

)

= lim
n→∞

(
1−

(
2n
n

)
cα2n

22n(1− 1
22n

(
2n
n

)
)

)
2n∑
j=0

(−1)(
j
k)
(

2n

j

)

= lim
n→∞

1

22n

2n∑
j=0

(−1)(
j
k)
(

2n

j

)
= c0(k).

The same holds true if p(x) is defined as in (2.1), that is,

lim
n→∞

SB(en,k; p) = c0(k).

In other words, in both cases, the behavior of the elementary symmetric Boolean polynomial en,k
under the biased exponential sum is dominated by c0(k). Furthermore, in both cases, the elementary
symmetric Boolean polynomial en,k is asymptotically not balanced if and only if k is a power of
two. That is, if k is not a power of two, then en,k can only be “sporadically balanced” under the
probability distributions considered so far. That is the same behavior when the domain is not
biased.

This behavior might be a bit surprising. However, the next theorem reveals that it is somewhat
expected. That is, if you choose uniformly at random a probability distribution, then almost surely
the biased exponential sums of en,k converges to c0(k) as n increases.

Theorem 4.1. For each positive integer n, suppose that a
(n)
j , j = 0, 1, . . . , n, were chosen uniformly

at random from the set of nonnegative real numbers such that

(4.3)
n∑
j=0

a
(n)
j

(
n

j

)
= 1.

For x ∈ Fn2 , let the probability distribution be given by p(n)(x) = a
(n)
j , when wt(x) = j. Then,

almost surely

SB(en,k; p
(n))→ c0(k), as n→∞.

Proof. Observe that

SB(en,k; p
(n)) =

∑
x∈Fn2

p(n)(x)(−1)en,k(x) =

n∑
j=0

a
(n)
j (−1)(

j
k)
(
n

j

)
.

Let r = blog2(k)c+ 1. Recall that by Lucas’ Theorem,(
j +m · 2r

k

)
≡
(
j

k

)
(mod 2),

for every natural number m. Let j1, . . . , js be all integers between 1 and 2r − 1 such that
(
j
k

)
is

odd. Then,

SB(en,k; p
(n)) =

n∑
j=0

a
(n)
j

(
n

j

)
− 2

s∑
`=1

∑
t≡j`mod 2r

a
(n)
t

(
n

t

)

= 1− 2
s∑
`=1

∑
m≥0

a
(n)
j`+m·2r

(
n

j` +m · 2r

)
.
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Since a
(n)
j were chosen uniformly at random such that (4.3) holds, then by the Law of Large

Numbers ∑
m≥0

a
(n)
j`+m·2r

(
n

j` +m · 2r

)
∼ 1

2r

n∑
j=0

a
(n)
j

(
n

j

)
→ 1

2r
,

as n grows. This implies that

SB(en,k; p
(n)) = 1− 2

s∑
`=1

∑
m≥0

a
(n)
j`+m·2r

(
n

j` +m · 2r

)

→ 1− 2

s∑
`=1

1

2r
= 1− s · 21−r

= c0(k)

as n grows. This concludes the proof. �

The previous theorem tells us that if we chose a probability distribution p on the elements of Fn2
randomly, then almost surely

(4.4) SB(en,k; p) ∼ c0(k).

This, of course, does not mean that (4.4) holds for every probability distribution. We can design a
probability distribution that specifically targets the behavior of en,k.

Example 4.2. Recall that en,2r−1(x) = 1 if and only if wt(x) ≡ 2r − 1 (mod 2r). We can use this
information to design a probability distribution p such that

SB(en,2r−1; p) 6∼ c0(2r − 1) =
2r−1 − 1

2r−1
.

Suppose that α is a nonnegative real number. Let x ∈ Fn2 and define

(4.5) p(x) =


α

αd(n+ 1)/2e) + dn/2e+ 1

(
n

wt(x)

)−1

, wt(x) ≡ 0 (mod 2)

1

αd(n+ 1)/2e) + dn/2e+ 1

(
n

wt(x)

)−1

, wt(x) ≡ 1 (mod 2).

Choose j ∈ {0, 1, . . . , n}. There are
(
n
j

)
vectors x ∈ Fn2 such that wt(x) = j. Also, there are

d(n+1)/2e integers j ∈ {0, 1, . . . , n} that are congruent to 0 (mod 2) and dn/2e that are congruent
to 1 (mod 2). Therefore, (4.5) is a well-defined probability distribution on Fn2 . Observe that this
distribution is designed in such a way that there is a different scale factor on the probability when
wt(x) is even and we know that every x ∈ Fn2 such that en,2r−1(x) = 1 lies in the case when wt(x)
is odd.

Observe that

SB(en,2r−1; p) =
∑
x∈Fn2

p(x)(−1)en,2r−1(x)

=
∑

wt(x)≡0 mod 2

p(x)(−1)en,2r−1(x)

+
∑

wt(x)6≡2r−1 mod 2r; odd

p(x)(−1)en,2r−1(x)

+
∑

wt(x)≡2r−1 mod 2r

p(x)(−1)en,2r−1(x)
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=

n∑
j≡0 mod 2

α

αd(n+ 1)/2e) + dn/2e+ 1

+

n∑
j 6≡2r−1 mod 2r; odd

1

αd(n+ 1)/2e) + dn/2e+ 1

−
n∑

j≡2r−1 mod 2r

1

αd(n+ 1)/2e) + dn/2e+ 1
.

However, we know that

#{0 ≤ j ≤ n : j ≡ j0 (mod 2`)} =

⌈
n− j0 + 1

2`

⌉
,

where j0 ∈ {0, 1, 2, . . . , 2` − 1}. Therefore,

SB(en,2r−1; p) =
α

αd(n+ 1)/2e) + dn/2e+ 1

⌈
n+ 1

2

⌉
+

1

αd(n+ 1)/2e) + dn/2e+ 1

2r−3∑
j=1; odd

⌈
n− j + 1

2r

⌉

− 1

αd(n+ 1)/2e) + dn/2e+ 1

⌈
n− 2r + 2

2r

⌉
.

Since

lim
n→∞

1

αd(n+ 1)/2e) + dn/2e+ 1

⌈
n− j + 1

2r

⌉
=

1

2r−1α+ 2r−1
,

this closed formula implies

lim
n→∞

SB(en,2r−1; p) =
2r−2α+ 2r−2 − 1

2r−2α+ 2r−2
.

This limit is different than c0(2r) if and only if α 6= 1. In the particular case when r = 2 and α = 0,
the limit is 0 and SB(en,3; p) = 0 if and only if n ≡ 0, 3 (mod 4). In other words, the elementary
symmetric polynomial en,3 is balanced over this biased domain when n ≡ 0, 3 (mod 4).

5. Concluding remarks

In this work we showed that under some conditions, biased and restricted exponential sums and
Walsh transforms of symmetric and rotation symmetric polynomials are C-finite or P -recursive
sequences. This is a generalization of the known results for non-biased domains. We also showed
that exponential sums and Walsh transforms of some families of rotation symmetric monomials
over the restricted domain En,j = {x ∈ Fn2 : wt(x) = j} (wt(x) is the weight of the vector x)
are given by polynomials of degree at most j. Finally, we also studied the asymptotic behavior of
biased exponential sums of symmetric Boolean functions and showed that their behavior is almost
surely the same as the regular exponential sum. We hope and expect to see applications of our
results, as well as continued progress toward covering other classes of functions, using our methods
or new ones to fit the specific purpose.
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