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Abstract. Exponential sums have applications to a variety of scientific fields, including, but not limited

to, cryptography, coding theory and information theory. Closed formulas for exponential sums of symmetric

Boolean functions were found by Cai, Green and Thierauf in the late 1990’s. Their closed formulas imply
that these exponential sums are linear recursive. The linear recursivity of these sums has been exploited in

numerous papers and has been used to compute the asymptotic behavior of such sequences. In this article,
we extend the result of Cai, Green and Thierauf, that is, we find closed formulas for exponential sums of

symmetric polynomials over any Galois fields. Our result also implies that the recursive nature of these

sequences is not unique to the binary field, as they are also linear recursive over any finite field. In fact, we
provide explicit linear recurrences with integer coefficients for such sequences. As a byproduct of our results,

we discover a link between exponential sums of symmetric polynomials over Galois fields and a problem for

multinomial coefficients which similar to the problem of bisecting binomial coefficients.

1. Introduction

Combinatorics and number theory are classic areas of mathematics with fascinating objects that captivate
the attention of mathematicians. One subject that lies in the intersection of these two areas is the theory of
Boolean functions. These beautiful functions have plenty of applications to different scientific fields. Some
examples include electrical engineering, game theory, cryptography, coding theory and information theory.

An n-variable Boolean function is a function F (X) from the vector space Fn2 to F2 where F2 = {0, 1} is
the binary field and n is a positive number. In some applications related to cryptography it is important for
Boolean functions to be balanced. A balanced Boolean function is one for which the number of zeros and the
number of ones are equal in its truth table (output table). Balancedness of Boolean functions can be studied
from the point of exponential sums. The exponential sum of a Boolean function F (X) over F2 is defined as

(1.1) S(F ) =
∑
x∈Fn2

(−1)F (x).

Observe that a Boolean function is balanced if and only if S(F ) = 0.
Memory restrictions of current technology have made the problem of efficient implementations of Boolean

functions a challenging one. In general, this problem is very hard to tackle, but imposing conditions on these
functions may ease the problem. For instance, symmetric Boolean functions are good candidates for efficient
implementations and today they are an active area research [2, 6, 7, 8, 10, 11, 12].

In general, to find closed formulas for exponential sums of symmetric Boolean functions was an open
problem until Cai, Green and Thierauf found formulas for them in the 1990’s [2]. Moreover, their formulas
imply that exponential sums of symmetric Boolean functions have a recursive nature. This has been exploited
in [5, 6, 7, 8, 11]. In the particular case of [6], the recursive nature of these sequences and their closed formulas
were used to prove asymptotically a conjecture about the balancedness of elementary symmetric Boolean
polynomials [12].

Many cryptographic properties, like correlation immune functions, resilient functions and bent functions
have been extended to other finite fields [13, 15, 17, 18, 19, 20]. Thus, a natural problem to explore is
the possibility that the results mentioned in the above paragraph can be extended to other finite fields or
perhaps they are just natural consequences of working over the binary field. Recently in [10], it has been
shown that exponential sums of linear combinations of elementary symmetric polynomials over Galois fields
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also satisfy linear recurrences. Therefore, at least the recursive nature of these sequences is not unique to
the binary field.

The recursive nature of exponential sums of symmetric polynomials over Galois fields presented in [10]
did not include explicit linear recurrences for these sequences. Instead, they proved the existence of such
recurrences and provided a method to find them. In this article, we find explicit linear recurrences for these
sequences. This is done by providing closed formulas for exponential sums of symmetric polynomials over
Galois fields. In other words, in this paper we settle the problem of finding closed formulas for exponential
sums of linear combinations of elementary symmetric polynomials over any Galois field. This extends the
work of Cai, Green and Thierauf for the binary field [2] to every finite field. As far as we know, this is new.

Our closed formulas depend on some multinomial sum expressions for our exponential sums. These
expressions provide a link between exponential sums of symmetric polynomials over Galois fields and a
problem for multinomial coefficients which is similar to the problem of bisecting binomial coefficients. A
solution (δ0, δ1, . . . , δn) to the equation

(1.2)

n∑
j=0

δj

(
n

j

)
= 0, δj ∈ {−1, 1},

is said to give a bisection of the binomial coefficients
(
n
j

)
, 0 ≤ j ≤ n. Observe that a solution to (1.2) provides

us with two disjoints sets A,B such that A ∪B = {0, 1, 2, . . . , n} and

(1.3)
∑
j∈A

(
n

j

)
=
∑
j∈B

(
n

j

)
= 2n−1.

The problem of bisecting binomial coefficients is a very interesting problem in its own right, but it is out
of the scope of this work. However, we believe that the connection between exponential sums of symmetric
polynomials and a problem similar to bisecting binomial coefficients is very appealing and underlines the
balancedness of symmetric polynomials over finite fields. It also has the potential to spark further research.

This article is divided as follows. The next section contains some preliminaries. In Section 3 we pro-
vide multinomial sum expressions for exponential sums of symmetric polynomials over Galois fields. These
multinomial sums representations are a computational improvement over the formal definition of exponential
sums.

Section 4 is the core section of the article. It is in this section where we generalized Cai et. al’s result
[2] by proving closed formulas for exponential sums of elementary symmetric polynomials over any Galois
field. Finally, in the last section, we present some consequences of our results. In particular, we provide a
connection to a problem similar to the problem of bisecting binomial coefficients and provide explicit linear
recurrences for exponential sums of linear combinations of elementary symmetric polynomials over finite
fields.

2. Preliminaries

It is a well-established result in the theory of Boolean functions that any symmetric Boolean function can
be identified with a linear combination of elementary symmetric Boolean polynomials. To be more precise,
let en,k be the elementary symmetric polynomial in n variables of degree k. For example,

e4,3 = X1X2X3 ⊕X1X4X3 ⊕X2X4X3 ⊕X1X2X4,

where ⊕ represents addition modulo 2. Every symmetric Boolean function F (X) can be identified with an
expression of the form

(2.1) F (X) = en,k1 ⊕ en,k2 ⊕ · · · ⊕ en,ks ,
where 0 ≤ k1 < k2 < · · · < ks are integers. For the sake of simplicity, the notation en,[k1,...,ks] is used to
denote (2.1). For example,

e3,[2,1] = e3,2 ⊕ e3,1(2.2)

= X1X2 ⊕X3X2 ⊕X1X3 ⊕X1 ⊕X2 ⊕X3.

As mentioned in the introduction, it is known that exponential sums of symmetric Boolean functions are
linear recursive [2, 6]. Moreover, closed formulas for them are well known. In fact, Cai et al. [2] proved the
following theorem.
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Theorem 2.1 ([2]). Let 1 ≤ k1 < · · · < ks be fixed integers and r = blog2(ks)c + 1. The value of the
exponential sum S(en,[k1,...,ks]) is given by

S(en,[k1,...,ks]) = c0(k1, . . . , ks)2
n +

2r−1∑
j=1

cj(k1, . . . , ks)(1 + ζj)
n,

where ζj = e
πi j

2r−1 , i =
√
−1 and

(2.3) cj(k1, . . . , ks) =
1

2r

2r−1∑
t=0

(−1)(
t
k1

)+···+( tks)ζ−tj .

Theorem 2.1 and a closed formula for c0(k) (proved in [6]) were used by Castro and Medina [6] to prove
asymptotically a conjecture of Cusick, Li and Stǎnicǎ about the balancedness of elementary symmetric
polynomials [12]. An adaptation of Theorem 2.1 to perturbations of symmetric Boolean functions (see [7])
was recently used in [5] to prove a generalized conjecture of Canteaut and Videau [3] about the existence of
balanced perturbations when the number of variables grows. The original conjecture, which was stated for
symmetric Boolean functions, said that only trivially balanced functions exist when the number of variables
grows. The original conjecture was proved by Guo, Gao and Zhao [14]. The same behavior holds true for
perturbations of symmetric Boolean functions.

One of the goals of this article is to generalize Theorem 2.1 to the general setting of Galois fields. Let p
be a prime and q = pl with l a positive integer. If F : Fnq → Fq, then its exponential sum over Fq is given by

(2.4) SFq (F ) =
∑
x∈Fnq

e
2πi
p TrFq/Fp (F (x)),

where TrFq/Fp represents the field trace function from Fq to Fp. The field trace function can be explicitly
defined as

(2.5) TrF
pl
/Fp(α) =

l−1∑
j=0

αp
j

,

with arithmetic done in Fpl . Recently in [10], it was proved that exponential sums over Fq of linear combina-
tions of elementary symmetric polynomials are linear recurrent with integer coefficients. Thus, the recursive
nature of these sequences is not restricted to F2. The approach presented in [10], however, does not provide
specific linear recurrences for these functions. Instead, it gives a procedure that relies on linear algebra to
calculate them. A closed formula for these sequences, like the one presented in Theorem 2.1, would allow us
to find such recurrences. Perhaps it can also be used to settle, at least asymptotically, the generalization of
Cusick, Li and Stǎnicǎ conjecture for Galois fields, see [1].

The formal definition of an exponential sum is not very useful if one desires to calculate the value of
SFq (F ). In fact, in general, this problem is clearly exponentially hard. However, imposing conditions on the
function F sometimes simplifies matters. For example, in the case of symmetric Boolean functions, it is not
hard to show that

(2.6) S(en,[k1,...,ks]) =

n∑
j=0

(−1)(
j
k1

)+···+( jks)
(
n

j

)
.

Equation (2.6) is a clear computational improvement over (1.1). It also connects (as mentioned in the
introduction) the problem of balancedness of symmetric Boolean functions to the problem of bisecting
binomial coefficients (see Mitchell [21]). As mentioned in the introduction, a solution (δ0, δ1, . . . , δn) to
the equation

(2.7)

n∑
j=0

δj

(
n

j

)
= 0, δj ∈ {−1, 1},

is said to give a bisection of the binomial coefficients
(
n
j

)
, 0 ≤ j ≤ n. The problem of bisecting binomial

coefficients is an interesting problem in its own right, however, it is out of the scope of this work. The
interested reader is invited to read [16, 21].
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In the next section, we prove a formula similar to (2.6) for SFq (en,k) using multinomial coefficients. The
formula is not only a computational improvement over the formal definition of SFq (F ), but also provide a
connection to a problem similar to the problem of bisecting of binomial coefficients for multinomial coeffi-
cients. Moreover, the fact that exponential sums of symmetric polynomials over finite fields can be expressed
as multinomial sums is later used in the proof of closed formulas for them. The proof of the closed formu-
las also depends on a classical result in number theory known as Lucas’ Theorem. We include it here for
completeness.

Theorem 2.2 (Lucas’ Theorem). Suppose that n and k are non-negative integers and let p be a prime.
Suppose that

n = n0 + n1p+ · · ·+ nlp
l

k = k0 + k1p+ · · ·+ klp
l,

with 0 ≤ nj , kj < p for j = 1, . . . , l. Then,(
n

k

)
≡

l∏
j=0

(
nj
kj

)
mod p.

Let D = pblogp(k)c+1. Observe that one consequence of Lucas’ Theorem is

(2.8)

(
n+D

k

)
≡
(
n

k

)
mod p.

This will be used throughout the rest of the paper.

3. A formula for exponential sums in terms of multinomial sums

In this section we prove a formula for SFq (en,k) in terms of multinomial coefficients. This formula is a
computational improvement over (2.4). We start by finding a formula, in this case, a recursive one, for the
value of en,k at a vector x.

Let n, k and m be positive integers and as be a parameter (s a positive integer). Let

(3.1) Λa1(k,m) = ak1

(
m

k

)
and define Λa1,...,al recursively by

(3.2) Λa1,a2,...,al+1
(k,m1,m2, . . . ,ml+1) =

ml+1∑
j=0

(
ml+1

j

)
ajl+1Λa1,...,al(k − j,m1,m2, . . . ,ml),

The value of en,k is linked to Λa1,...,al .

Lemma 3.1. Let n and k be positive integers. Let Al = {0, a1, . . . , al} and x ∈ Anl . Suppose that aj appears
mj times in x. Then,

(3.3) en,k(x) = Λa1,...,al(k,m1, . . . ,ml).

Proof. First observe that if l = 1, that is, x ∈ An1 , then

(3.4) en,k(x) = ak1

(
m1

k

)
.

Now observe that if the variables Xn, Xn−1, . . . , Xn−r+1 are set to be α, then

(3.5) en,k(X1, . . . , Xn−r, α, . . . , α) =

r∑
j=0

(
r

j

)
αjen−r,k−j(X1, . . . , Xn−r).

Symmetry and an induction argument finish the proof. �

The above lemma can be used to express exponential sums of symmetric polynomials as a multi-sum of
multinomial coefficients.
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Theorem 3.2. Let n, k be natural numbers such that k ≤ n, p a prime and q = pr for some positive integer
r. Suppose that Fq = {0, α1, . . . , αq−1} is the Galois field of q elements. Then,

SFq (en,k) =

n∑
m1=0

n−m1∑
m2=0

n−m1−m2∑
m3=0

· · ·
n−m1−···−mq−2∑

mq−1=0

(
n

m∗0,m1,m2, . . . ,mq−1

)

× exp

(
2πi

p
TrFq/Fp(Λα1,...,αq−1(k,m1, . . . ,mq−1)

)
,

where m∗0 = n− (m1 + · · ·+mq−1).

Proof. Consider a tuple x ∈ Fnq . Suppose that αj appears mj times in x. Clearly, this implies

n = m∗0 +m1 +m2 + · · ·+mq−1.

A simple counting argument shows that there are

(3.6)

(
n

m1

)(
n−m1

m2

)(
n−m1 −m2

m3

)
. . .

(
n−m1 −m2 − · · · −mq−2

mq−1

)
of such tuples. This number can be written in multinomial form as

(3.7)

(
n

m∗0,m1,m2, . . . ,mq−1

)
.

Observe that Lemma 3.1 implies that the value of en,k on each of these tuples is

(3.8) en,k(x) = Λα1,...,αq−1
(k,m1, . . . ,mq−1).

Adding over all possible choices of m1,m2, . . . ,mq−1 produces the result. �

An easy adjustment to the proof of Theorem 3.2 leads the following.

Corollary 3.3. Let 1 ≤ k1 < k2 < · · · < ks and n be positive integers, p a prime and q = pr for some positive
integer r. Suppose that Fq = {0, α1, . . . , αq−1} is the Galois field of q elements. Consider the symmetric
function

s∑
j=1

βjen,kj where βj ∈ F×q .

Then,

SFq

 s∑
j=1

βjen,kj

 =

n∑
m1=0

n−m1∑
m2=0

n−m1−m2∑
m3=0

· · ·
n−m1−···−mq−2∑

mq−1=0

(
n

m∗0,m1,m2, . . . ,mq−1

)

× exp

2πi

p
TrFq/Fp

 s∑
j=1

βjΛα1,...,αq−1(kj ,m1, . . . ,mq−1)

 .

Proof. The proof follows the same argument as in Theorem 3.2. �

For small q, Theorem 3.2 and the recursive nature of Λa1,...,al can be used to speed up the computation
of SFq (en,k). For example, using an implementation of Theorem 3.2 and an old computer (whose features
are not top of the art) from one of the authors, it took Mathematica 0.008 seconds to calculate

(3.9) SF3(e12,5) = 346113 + 92664e
2iπ
3 + 92664e−

2iπ
3 = 253449.

In comparison, it took 26.6 minutes when using the definition of the exponential sum. The same implementa-
tion can be used to obtain values of exponential sums for n relatively big. For instance, it took Mathematica
1.28 seconds to calculate

(3.10) SF3
(e100,7) = 113935090835950800739864834563949291416514642941,

and 41.28 seconds to calculate

(3.11) SF4(e50,5) = 158735097466874432874732322816.

It took about two minutes and a half to calculate SF3
(e500,11), which is an integer with 239 digits.
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In the next section, we use these multi-sum representation to prove closed formulas for exponential sums
of symmetric polynomials over Galois fields. The formulas are a generalization of the work of Cai, Green
and Thierauf [2].

4. Closed formulas for exponential sums of symmetric polynomials

In this section we generalize Theorem 2.1, that is, we provide closed formulas for the exponential sums
considered in this article. Our formulas depend on circulant matrices and on periodicity. Thus, we start
with a short background on these topics.

Let D be a positive integer and α = (c0, c1, . . . , cD−1) ∈ CD. The D-circulant matrix associated to α,
denoted by circ(α), is defined by

(4.1) circ(α) :=


c0 c1 . . . cD−2 cD−1

cD−1 c0 . . . cD−3 cD−2

...
...

. . .
...

...
c2 c3 . . . c0 c1
c1 c2 . . . cD−1 c0

 .

The polynomial pα(X) = c0 + c1X + · · · + cD−1X
D−1 is called the associated polynomial of the circulant

matrix. In the literature, this polynomial is also called representer polynomial. Observe that if

(4.2) π =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
1 0 0 . . . 0 0

 ,

then circ(α) = pα(π).
Circulant matrices are well-understood objects. For example, it is known that the (normalized) eigenvec-

tors of any circulant matrix circ(α) are given by

(4.3) vj =
1√
D

(1, ωj , ω
2
j , . . . , ω

D−1
j )T ,

where ωj = exp (2πij/D) and i =
√
−1, with corresponding eigenvalues

(4.4) λj(α) = pα(ωj) = c0 + c1ωj + c2ω
2
j + · · ·+ cD−1ω

D−1
j .

Moreover, any circulant matrix circ(α) can be diagonalized in the following form. Consider the Discrete
Fourier Transform matrix

(4.5) Fn =


ξ0·0
n ξ0·1

n . . . ξ
0·(n−1)
n

ξ1·0
n ξ1·1

n . . . ξ
1·(n−1)
n

...
...

. . .
...

ξ
(n−1)·0
n ξ

(n−1)·1
n . . . ξ

(n−1)·(n−1)
n

 ,

where ξn = exp(2πi/n). Let Un = (1/
√
n)Fn be its normalization and define

(4.6) ∆(α) = diag(λ0(α), λ1(α), . . . , λD−1(α)).

Then,

(4.7) circ(α) = UD∆(α)U∗D.

See [4, Th.3.2.2, p. 72] for more information.

Remark 4.1. The Discrete Fourier Transform (DFT) is usually defined as the conjugate of the matrix Fn.
We defined the DFT as Fn in order to preseve the indices of λj(α)’s in later arguments.
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A function f : Z→ Z is said to be periodic with period D if f(j+D) = f(j) for any j ∈ Z. Periodicity can
be extended to functions g : Z×Z→ Z without too much effort. The periodicity of a function g : Z×Z→ Z
is usually divided by components. We say that a positive integer D1 is a period in the first component of g if

(4.8) g(j1 +D1, j2) = g(j1, j2)

for every j1, j2 ∈ Z. Similarly, we say that a positive integer D2 is a period in the second component of g if

(4.9) g(j1, j2 +D2) = g(j1, j2)

for every j1, j2 ∈ Z. Of course, if g is periodic in its first and second components, then we say that g is
periodic. Moreover, D = lcm(D1, D2) is such that

(4.10) g(j1 +D, j2 +D) = g(j1, j2)

for every j1, j2 ∈ Z. The concept of periodicity can be extended further to functions from Z × Z × · · · × Z
to Z. The discussion is the same as for the case Z× Z, so we do not write the details.

We are now ready to start with the argument for our formulas. Consider the summation

(4.11)

n∑
l=0

al
(
n

l

)
.

Later it will become clear why we choose this sum. Given a positive integer D > 1, the sum (4.11) can be
splitted as

(4.12)

n∑
l=0

al
(
n

l

)
=

D−1∑
t=0

rt(n; a),

where

(4.13) rt(n; a) =
∑

j≡t mod D

aj
(
n

j

)
.

The next result provides closed formulas for rt(n; a), and therefore, for (4.11).

Proposition 4.2. Let n ∈ N and 0 ≤ t ≤ D − 1. Then,

(4.14) rt(n; a) =
1

D

D−1∑
m=0

ξtmD λnm,

where ξD = exp(2πi/D) and λm = 1 + aξ−mD are the eigenvalues of circ(1, 0, . . . , 0, a).

Proof. The approach of this proof is similar to the one presented in [2]. Note that for 1 ≤ t ≤ D − 1, we
have

(4.15) rt(n; a) = rt(n− 1; a) + a rt−1(n− 1; a).

Also,

(4.16) r0(n; a) = r0(n− 1; a) + a rD−1(n− 1; a).

Therefore, if we define

(4.17) r(n; a) =


r0(n; a)
r1(n; a)

...
rD−1(n; a)

 ,

then

r(n; a) =


1 0 0 . . . 0 a
a 1 0 . . . 0 0
0 a 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . a 1

 r(n− 1; a).(4.18)
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Let α = (1, 0, . . . , 0, a). The last equation is equivalent to

(4.19) r(n; a) = AD(a)r(n− 1; a),

where AD(a) = circ(α).
Iteration of (4.19) leads to r(n; a) = AD(a)nr(0; a). Observe that

(4.20) r0(0; a) =

(
0

0

)
= 1 and rt(0; a) = 0 for t > 0.

Thus,

(4.21) r(0; a) =


1
0
...
0

 .

Equation (4.7) now implies that

r(n; a) = UD∆(α)nU∗D · r(0; a) =
1

D
FD∆(α)nF ∗D · r(0; a) =

1

D
FD∆(α)n


1
1
...
1

(4.22)

=
1

D
FD


λ0(α)n

λ1(α)n

...
λD−1(α)n

 =


1
D

∑D−1
j=0 ξ0·j

D λj(α)n

1
D

∑D−1
j=0 ξ1·j

D λj(α)n

...
1
D

∑D−1
j=0 ξ

(D−1)j
D λj(α)n

 .

It follows that

(4.23) rt(n; a) =
1

D

D−1∑
j=0

ξtjDλj(α)n

where λj(α) = 1 + aξ−jD . �

The following results are easy consequences of the above proposition.

Corollary 4.3. Let F be a periodic function with period D. Suppose that ξD = 1 (not necessarily primitive).
Then,

(4.24)

n∑
l=0

(
n

l

)
alξF (l) =

1

D

D−1∑
t=0

ξF (t)
D−1∑
j=0

ξtjDλ
n
j ,

where ξD = exp(2πi/D) and λj = 1 + aξ−jD , for 0 ≤ j ≤ D − 1, are the eigenvalues of circ(1, 0, . . . , 0, a).

Proof. Observe that

n∑
l=0

(
n

l

)
alξF (l) =

D−1∑
t=0

 ∑
j≡t mod D

ξF (t)al
(
n

j

)(4.25)

=

D−1∑
t=0

ξF (t)rt(n; a).

The result now follows from Proposition 4.2. �

Corollary 4.4. Let F be a periodic function with period D. Suppose that ξD = 1 (not necessarily primitive).
Then,

(4.26)

n∑
l=0

(
n

l

)
ξF (l) =

1

D

D−1∑
t=0

ξF (t)
D−1∑
j=0

ξtjD

(
1 + ξ−jD

)n
,
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where ξD = exp(2πi/D).

Proof. Set a = 1 in the previous corollary. �

Proposition 4.2 and its corollaries can be extended further to obtain closed formulas for multinomial
sums. Before we present such an extension, we introduce the concept of a rearrangement of a list. By a
rearrangement of (t1, . . . , tr) we mean a permutation of the symbols in (t1, . . . , tr). For example, the set of
all different rearrangements of (2, 2, 1, 1) is

(2, 2, 1, 1), (2, 1, 2, 1)

(2, 1, 1, 2), (1, 2, 2, 1)

(1, 2, 1, 2), (1, 1, 2, 2).

We use Sym(t1, . . . , tr) to denote the set of all rearrangements of (t1, . . . , tr). The next result is an extension
of Proposition 4.7.

Theorem 4.5. Let F (q1, . . . , qr) be a periodic function in each component. Moreover, suppose that D is a
period for F in each component and that ξD = 1 (not necessarily primitive). Define,

(4.27) S(n) =
n∑

q1=0

n−q1∑
q2=0

· · ·
n−q1−···−qr−1∑

qr=0

(
n

q1

)(
n− q1

q2

)
· · ·
(
n− q1 − · · · − qr−1

qr

)
ξF (q1,...,qr).

Then,

(4.28) S(n) =

D−1∑
j1=0

j1∑
j2=0

· · ·
jr−1∑
jr=0

cj1,...,jr (D)
(

1 + ξ−j1D + · · ·+ ξ−jrD

)n
,

where

(4.29) cj1,...,jr (D) =
1

Dr

D−1∑
br=0

D−1∑
br−1=0

· · ·
D−1∑
b1=0

ξF (b1,...,br)
∑

(j′1,...,j
′
r)∈Sym(j1,...,jr)

ξ
j′1br+···+j′rb1
D ,

and ξD = exp(2πi/D).

Proof. We present the core of proof for r = 3. We decided to do this in order to simplify the writing of the
proof.

Write S(n) as

(4.30) S(n) =

n∑
q1=0

n−q1∑
q2=0

(
n

q1

)(
n− q1

q2

) n−q1−q2∑
q3=0

(
n− q1 − q2

q3

)
ξF (q1,q2,q3).

Apply Corollary 4.4 to the last sum to get

(4.31) S(n) =

n∑
q1=0

n−q1∑
q2=0

(
n

q1

)(
n− q1

q2

) 1

D

D−1∑
b3=0

ξF (q1,q2,b3)
D−1∑
j1=0

ξj1b3D λn−q1−q2j1

 ,

where λj1 = 1 + ξ−j1D . Re-write this equation as

(4.32) S(n) =
1

D

D−1∑
b3=0

D−1∑
j1=0

ξj1b3D

n∑
q1=0

(
n

q1

)
λn−q1j1

n−q1∑
q2=0

(
n− q1

q2

)
(λ−1
j1

)q2ξF (q1,q2,b3).

Now apply Corollary 4.3 to the last sum to get

(4.33) S(n) =
1

D

D−1∑
b3=0

D−1∑
j1=0

ξj1b3D

n∑
q1=0

(
n

q1

)
λn−q1j1

 1

D

D−1∑
b2=0

ξF (q1,b2,b3)
D−1∑
j2=0

ξj2b2D

 (1 + λ−1
j1
ξ−j2D )n−q1 .

Moreover, observe that

λn−q1j1
(1 + λ−1

j1
ξ−j2D )n−q1 = (λj1 + ξ−j2D )n−q1 = (1 + ξ−j1D + ξ−j2D )n−q1 = λn−q1j1,j2

.
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Therefore,

(4.34) S(n) =
1

D

D−1∑
b3=0

D−1∑
j1=0

ξj1b3D

n∑
q1=0

(
n

q1

) 1

D

D−1∑
b2=0

ξF (q1,b2,b3)
D−1∑
j2=0

ξj2b2D

λn−q1j1,j2
.

Rearrange terms to get

S(n) =
1

D2

D−1∑
b3=0

D−1∑
b2=0

D−1∑
j1=0

D−1∑
j2=0

ξj1b3+j2b2
D λnj1,j2

n∑
q1=0

(
n

q1

)
ξF (q1,b2,b3)ξj2b2D (λ−1

j1,j2
)q1 .(4.35)

Apply Corollary 4.3 once again. After simplification, we have

S(n) =
1

D3

D−1∑
b3=0

D−1∑
b2=0

D−1∑
b1=0

D−1∑
j1=0

D−1∑
j2=0

D−1∑
j3=0

ξj1b3+j2b2+j3b1
D ξF (b1,b2,b3)λnj1,j2,j3 .(4.36)

In general, the same argument can be repeated multiple times to get

(4.37) S(n) =
1

Dr

D−1∑
br=0

D−1∑
br−1=0

· · ·
D−1∑
b1=0

D−1∑
j1=0

D−1∑
j2=0

· · ·
D−1∑
jr=0

ξF (b1,...,br)ξj1br+···+jrb1
D λnj1,...,jr ,

where ξD = exp(2πi/D) and λj1,...,jr = 1 + ξ−j1D + ξ−j2D + · · ·+ ξ−jrD .
Observe that equation (4.37) can be written as

(4.38) S(n) =

D−1∑
j1=0

D−1∑
j2=0

· · ·
D−1∑
jr=0

dj1,...,jr (D)λnj1,...,jr ,

where

(4.39) dj1,...,jr (D) =
1

Dr

D−1∑
br=0

D−1∑
br−1=0

· · ·
D−1∑
b1=0

ξF (b1,...,br)ξj1br+···+jrb1
D .

However, note that λt1,...,tr = λt′1,...,t′r where (t′1, . . . , t
′
r) is any rearrangement of (t1, . . . , tr). That means

that the coefficient of λnt1,...,tr in (4.37) is the sum of all dt′1,...,t′r (D) where (t′1, . . . , t
′
r) is a rearrangement of

(t1, . . . , tr). Collecting all these terms yield the result. This concludes the proof. �

Let us go back to our exponential sums. The above results can be used to obtain closed formulas for
exponential sums of elementary symmetric polynomials. Let Fq = {0, α1, . . . , αq−1}. Theorem 3.2 implies
that

(4.40) SFq (en,k) =

n∑
m1=0

n−m1∑
m2=0

· · ·
n−m1−···−mq−2∑

mq−1=0

(
n

m∗0,m1,m2, . . . ,mq−1

)
ξ

Tr(Λα1,...,αq−1
(k,m1,...,mq−1))

p

where m∗0 = n− (m1 + · · ·+mq−1), ξp = exp(2πi/p) and Tr = TrFq/Fp . Moreover, note that(
n

m∗0,m1,m2, . . . ,mq−1

)
=

(
n

m1

)(
n−m1

m2

)
· · ·
(
n−m1 − · · · −mq−2

mq−1

)
.

Therefore, if we let

(4.41) Fk;Fq (m1, . . . ,mq−1) = Λα1,...,αq−1
(k,m1, . . . ,mq−1),

then

(4.42) SFq (en,k) =

n∑
m1=0

n−m1∑
m2=0

· · ·
n−m1−···−mq−2∑

mq−1=0

(
n

m∗0,m1,m2, . . . ,mq−1

)
ξ

Tr(Fk,Fq (m1,...,mq−1))
p

is of the same type as (4.27). It remains to show the periodicity of Fk;Fq .
Unfortunately, the function Fk;Fq , as defined, is not fully periodic. However, the problem can be circum-

vented by defining a periodic function that coincides with Λa1,...,al(k,m1, . . . ,ml) when m1, . . . ,ml are all
non-negative.
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Lemma 4.6. Let p be prime and a1, . . . , al be some elements in some field extension of Fp. Define

(4.43) Λ(p)
a1,...,al

(k,m1, . . . ,ml) := Λa1,...,al(k,m
+
1 , . . . ,m

+
l ) mod p,

where

m+
j =

{
mj , if mj > 0

mj +
(⌊
−mj
D

⌋
+ 1
)
D, if mj ≤ 0.

Then, Λ
(p)
a1,...,al(k,m1, . . . ,ml) is periodic in each of the variables m1, . . . ,ml with period D = pblogp(k)c+1.

Proof. We first show that if m1, . . . ,ml are all non-negative, then

Λa1,...,al(k,m1, . . . ,mj +D, . . . ,ml) ≡ Λa1,...,al(k,m1, . . . ,mj , . . . ,ml) mod p

for each j = 1, . . . , l. The proof of this claim is by induction on l.
Suppose first that l = 1. That is, consider

(4.44) Λa1(k,m1) = ak
(
m1

k

)
.

Lucas’ Theorem implies that if D = pblogp(k)c+1, then

(4.45)

(
m1 +D

k′

)
≡
(
m1

k′

)
mod p,

for every k′ ≤ k. Therefore, Λa1(k′,m1 +D) ≡ Λa1(k′,m1) mod p for every k′ ≤ k and the result holds for
l = 1.

Suppose now that the result holds for some l ≥ 1. Consider Λa1,...,al,al+1
(k,m1, . . . ,ml,ml+1). Recall that

(4.46) Λa1,...,al,al+1
(k,m1, . . . ,ml,ml+1) =

ml+1∑
j=0

(
ml+1

j

)
ajl+1Λa1,...,al(k − j,m1, . . . ,ml).

It is clear that

Λa1,...,al,al+1
(k,m1, . . . ,mj +D, . . . ,ml,ml+1) ≡ Λa1,...,al,al+1

(k,m1, . . . ,mj , . . . ,ml,ml+1) mod p

holds for j = 1, . . . , l (induction hypothesis). It remains to show that it is also true for the variable ml+1.
In order to do that, first note that a simple induction argument shows that if k < 0, then

Λa1,...,al(k,m1, . . . ,ml) = 0.

Therefore, every term on the right-hand side of (4.46) for which j > k is 0. This implies that the binomial
coefficient that accompanies every surviving term in (4.46) satisfies (Lucas’ Theorem)

(4.47)

(
ml+1 +D

j

)
≡
(
ml+1

j

)
mod p.

Then,

Λa1,...,al,al+1
(k,m1, . . . ,ml,ml+1 +D) =

ml+1+D∑
j=0

(
ml+1 +D

j

)
ajl+1Λa1,...,al(k − j,m1, . . . ,ml)

≡
ml+1+D∑
j=0

(
ml+1

j

)
ajl+1Λa1,...,al(k − j,m1, . . . ,ml) mod p(4.48)

≡
ml+1∑
j=0

(
ml+1

j

)
ajl+1Λa1,...,al(k − j,m1, . . . ,ml) mod p

≡ Λa1,...,al+1
(k,m1, . . . ,ml+1) mod p.

Therefore,

Λa1,...,al+1
(k,m1, . . . ,ml+1 +D) ≡ Λa1,...,al+1

(k,m1, . . . ,ml+1) mod p

is also true. We conclude by induction that if m1, . . . ,ml are non-negative integers, then

Λa1,...,al(k,m1, . . . ,mj +D, . . . ,ml) ≡ Λa1,...,al(k,m1, . . . ,mj , . . . ,ml) mod p
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for j = 1, . . . , l and D = pblogp(k)rc+1.
It is clear that

(4.49) Λa1,...,al(k,m1, . . . ,mj + tD, . . . ,ml) ≡ Λa1,...,al(k,m1, . . . ,mj , . . . ,ml) mod p

for every non-negative integer t. Sadly, the same cannot be said about negative t. For example, if ml is
negative, then by the inductive definition of Λa1,...,al one has that Λa1,...,al(k,m1, . . . ,ml) = 0. However,
this can be circumvented by defining the function

Λ(p)
a1,...,al

(k,m1, . . . ,ml) := Λa1,...,al(k,m
+
1 , . . . ,m

+
l ) mod p,

where

(4.50) m+
j =

{
mj , if mj > 0

mj +
(⌊
−mj
D

⌋
+ 1
)
D, if mj ≤ 0.

Observe that

Λ(p)(k,m1, . . . ,mj + tD, . . . ,ml) = Λ(p)(k,m1, . . . ,mj , . . . ,ml)

for every t ∈ Z and j = 1, . . . , l. In other words, Λ
(p)
a1,...,al(k,m1, . . . ,ml) is periodic in each of the variables

m1, . . . ,ml with period D. This concludes the proof. �

Let us go back to formula (4.42) for SFq (en,k). Note that the value of ξ
Tr(Fk;Fq (m1,...,mq−1))
p depends only

on the value of Fk;Fq (m1, . . . ,ml) mod p. Therefore, if we define

(4.51) F
(p)
k;Fq (m1, . . . ,mq−1) := Λ(p)

α1,...,αq−1
(k,m1, . . . ,mq−1),

then

(4.52) SFq (en,k) =

n∑
m1=0

n−m1∑
m2=0

· · ·
n−m1−···−mq−2∑

mq−1=0

(
n

m∗0,m1,m2, . . . ,mq−1

)
ξ

Tr
(
F

(p)
k,Fq (m1,...,mq−1)

)
p .

We now present the main result of the article, i.e. our closed formulas for SFq (en,k). This generalizes Cai,
Green and Thierauf’s result for the binary case [2] to any finite field.

Theorem 4.7. Let n and k > 1 be positive integers and p be a prime and q = pr with r ≥ 1. Let
D = pblogp(k)c+1. Then,

SFq (en,k) =

D−1∑
j1=0

j1∑
j2=0

· · ·
jq−2∑
jq−1=0

cj1,...,jq−1
(k)
(

1 + ξ−j1D + · · ·+ ξ
−jq−1

D

)n
,

where

cj1,...,jq−1
(k) =

1

Dq−1

D−1∑
bq−1=0

· · ·
D−1∑
b1=0

ξ
Tr
(
F

(p)
k;Fq (b1,...,bq−1)

)
p

∑
(j′1,...,j

′
q−1)∈Sym(j1,...,jq−1)

ξ
j′1bq−1+···+j′q−1b1
D ,

ξD = exp(2πi/D), Tr = TrFq/Fp , and λj1,...,jq−1 = 1 + ξ−j1D + ξ−j2D + · · ·+ ξ
−jq−1

D .

Proof. The sum in (4.52) is of type (4.27). Moreover, Lemma 4.6 implies that F
(p)
n,k;Fq (m1, . . . ,mq−1) is

periodic in each component with period D.
�

We point out that Theorem 4.7 can be extended to linear combinations of elementary symmetric polyno-
mials without too much effort. For instance, suppose that 0 ≤ k1 < · · · < ks are integers and β1, . . . , βs ∈ F×q .
The discussion prior Theorem 4.7 together with Corollary 3.3 implies that

SFq

 s∑
j=1

βjen,kj

 =

n∑
m1=0

n−m1∑
m2=0

· · ·
n−m1−···−mq−2∑

mq−1=0

(
n

m∗0,m1,m2, . . . ,mq−1

)
(4.53)

× ξ
Tr
(∑s

j=1 βjF
(p)
k,Fq (m1,...,mq−1)

)
p .



CLOSED FORMULAS FOR EXPONENTIAL SUMS 13

The statement of Theorem 4.7 can now be written almost verbatim for linear combinations of elementary
symmetric polynomials. The only differences are that D is now D = pblogp(ks)c+1 and

Tr
(
F

(p)
k;Fq (b1, . . . , bq−1)

)
in the definition of cj1,...,jq−1

(k) must be replaced by

Tr

 s∑
j=1

βjF
(p)
kj ;Fq (b1, . . . , bq−1)

 .

Similar adjustments can be applied to the other results. In the next section, we presents some consequences
of our results.

5. Some consequences and examples

The closed formulas presented in this articles have some nice consequences. In this section, we present
some of them.

5.1. Multisection of multinomial coefficients. Theorem 3.2 and Corollary 3.3 offer a hint to a problem
similar to bisections of binomial coefficients for multinomial coefficients. Let p be a prime. Emulating the
binary case, we define (p, q)-multisection of multinomial coefficients (q being a power of p) to be the process
of dividing the list

(5.1) L(n; q) =

{(
n

m∗0,m1,m2, . . . ,mq−1

)}
,

where m∗0 = n− (m1 + · · ·+mq−1) and the indices run

0 ≤ m1 ≤ n, 0 ≤ m2 ≤ n−m1, . . . , 0 ≤ mq−1 ≤ n−m1 −m2 − · · · −mq−2,

into p sublists, lj(n; q), 1 ≤ j ≤ p, such that the sum on each sublist is the same. This common sum must
be qn−1.

Observe that Theorem 3.2 and Corollary 3.3 imply that every time SFq (β1en,k1 + · · · + βsen,ks) = 0
we obtain a (p, q)-multisection of multinomial coefficients. This connection generalizes the one that exists
between bisections of binomial coefficients and symmetric Boolean functions.

Example 5.1. The elementary symmetric polynomial e5,3 is such that SF3
(e5,3) = 0. Observe that

(5.2) L(5; 3) = {1, 5, 10, 10, 5, 1, 5, 20, 30, 20, 5, 10, 30, 30, 10, 10, 20, 10, 5, 5, 1}.

The (3,3)-multisection that corresponds to e5,3 over F3 is

l1(5; 3) = {1, 5, 5, 10, 10, 20, 30}(5.3)

l2(5; 3) = {1, 5, 5, 10, 10, 20, 30}
l3(5; 3) = {1, 5, 5, 10, 10, 20, 30}.

Example 5.2. The symmetric polynomial e6,5 + e6,3 satisfies SF3
(e6,5 + e6,3) = 0. In this case,

(5.4) L(6; 3) = {1, 6, 15, 20, 15, 6, 1, 6, 30, 60, 60, 30, 6, 15, 60, 90, 60, 15, 20, 60, 60, 20, 15, 30, 15, 6, 6, 1}.

The (3,3)-multisection that corresponds to e6,5 + e6,3 over F3 is

l1(6; 3) = {1, 6, 6, 15, 15, 20, 30, 30, 30, 90}(5.5)

l2(6; 3) = {1, 6, 6, 15, 15, 20, 60, 60, 60}
l3(6; 3) = {1, 6, 6, 15, 15, 20, 60, 60, 60}.

As in the Boolean case, we may try to define trivial (p, q)-multisections. A possible way to do this is to
say that a (p, q)-multisection is trivial if l1(n; k) = l2(n; k) = · · · = lp(n; k). Again, following the binary
case, we say that a symmetric polynomial β1en,k1 + · · · + βsen,ks is trivially balanced over Fq if its related
(p, q)-multisection is trivial. For example, e5,3 is trivially balanced, but e6,5 + e6,3 is not. It would be
interesting to know if some results known for the binary case also apply to this problem.
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5.2. A Diophantine equation. Theorem 3.2 and its corollary can be written in terms of partitions of n.
We say that λ = (λ1, . . . , λr) is a partition of n, and write λ a n, if the λj are integers and

λ1 ≥ · · · ≥ λr ≥ 1 and n = λ1 + · · ·+ λr.

The notation λ aq n implies that λ is a partition of n and has at most q entries. For example, if λ = (6, 3, 1),
then λ a4 10 because it has 3 entries and 3 ≤ 4. On the other hand, if λ = (4, 2, 2, 1, 1), then λ a 10, but
λ 6a4 10. From now on, we will see partitions λ aq n as lists of length q. Of course, by definition, a partition
λ aq n may have less than q entries. If that is the case, right-pad zeros to the list until it has q entries. For
example, λ = (6, 3, 1) is such that λ a4 10. In this case, we view λ as λ = (6, 3, 1, 0).

If λ a n, then the symbol (
n

λ

)
represents the multinomial obtained from λ. For example, if λ = (6, 3, 1), then(

10

λ

)
=

(
10

6, 3, 1

)
.

By a rearrangement of λ we mean a permutation of the symbols in λ. Similar to the previous section, we
use Sym(λ) to denote the set of all rearrangements of λ. Finally, if γ is a non-empty list, then γ∗ is the list
obtained from γ by removing the first element. For example, if γ = (2, 2, 1, 1), then γ∗ = (2, 1, 1). Theorem
3.2 and Corollary 3.3 can be re-stated as follows.

Theorem 5.3. Let n, k be natural numbers such that k ≤ n, p a prime and q = pr for some positive integer
r. Suppose that Fq = {0, α1, . . . , αq−1} is the Galois field of q elements. Then,

SFq (en,k) =
∑
λaqn

(
n

λ

) ∑
γ∈Sym(λ)

exp

(
2πi

p
TrFq/Fp(Λα1,...,αq−1

(k,γ∗)

)
.

Corollary 5.4. Let 1 ≤ k1 < k2 < · · · < ks and n be positive integers, p a prime and q = pr for some positive
integer r. Suppose that Fq = {0, α1, . . . , αq−1} is the Galois field of q elements. Consider the symmetric
function

s∑
j=1

βjen,kj where βj ∈ F×q .

Then,

SFq

 s∑
j=1

βjen,kj

 =
∑
λaqn

(
n

λ

) ∑
γ∈Sym(λ)

exp

2πi

p
TrFq/Fp

 s∑
j=1

βjΛα1,...,αq−1
(kj ,γ

∗)

 .

Exponential sums of linear combinations of elementary symmetric polynomials are also linked, via Theo-
rem 5.3 and Corollary 5.4, to the Diophantine equation

(5.6)
∑
λaqn

(
n

λ

)
xλ = 0.

Observe that every time

SFq

 s∑
j=1

βjen,kj

 = 0,

we find a solution to (5.6). Here is an example.

Example 5.5. Consider F4 = {0, 1, α, α+ 1} where α2 = α+ 1. The symmetric polynomial

(1 + α)en,3 + (1 + α)en,2 + αen,1

is such that

(5.7) SF4
((1 + α)e8,3 + (1 + α)e8,2 + αe8,1) = 0.
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Therefore, we have a solution to (5.6) for n = 8 and q = 4. The integer partitions λ of 8 that satisfies λ a4 8
are

λ1 = (8), λ2 = (7, 1), λ3 = (6, 2), λ4 = (6, 1, 1),
λ5 = (5, 3), λ6 = (5, 2, 1), λ7 = (5, 1, 1, 1), λ8 = (4, 4),
λ9 = (4, 3, 1), λ10 = (4, 2, 2), λ11 = (4, 2, 1, 1), λ12 = (3, 3, 2),
λ13 = (3, 3, 1, 1), λ14 = (3, 2, 2, 1), λ15 = (2, 2, 2, 2).

The solution to (5.6) provided by (5.7) is given by

(δ1, δ2, . . . , δ15) = (4,−4,−4, 4,−4, 8,−4, 6,−8,−4, 4, 4, 2,−4, 1).

In other words,
15∑
j=1

(
8

λj

)
δj = 0.

Remark 5.6. A natural problem to explore is to see how solutions to (5.6) given by exponential sums of
linear combinations of elementary symmetric polynomials look like as n grows. Perhaps something similar
to the study presented in [5] holds true in this case. This is part of future research.

5.3. Linear recurrences. The closed formulas presented in Theorem 4.7 imply that exponential sums
over Galois fields of linear combinations of elementary symmetric polynomials satisfy homogeneous linear
recurrences with integer coefficients. Moreover, we can provide explicit recurrences that are generalizations
of the ones exploited for the binary case in [5, 6, 7, 8, 9].

A sequence {xn} is said to satisfy a homogenous linear recurrence with constant coefficients of order ` if
there exist constants c1, . . . , c` such that

(5.8) xn = c1xn−1 + c2xn−2 + · · ·+ c`xn−`.

The polynomial P (X) = X`− c1X`−1− c2X`−2−· · ·− c`−1X − c` is known as the characteristic polynomial
of the recurrence (5.8). It is a well-established result in the theory of linear recurrences that solutions to
(5.8) can be expressed in terms of the roots of its characteristic polynomial. Explicitly, if

(5.9) P (X) = (X − α1)e1(X − α2)e2 · · · (X − αt)et ,

then every solution to (5.8) has the form

(5.10) xn =

t∑
j=1

pj(n)αnj ,

where pj(X)’s are polynomials and deg(pj(X)) ≤ ej . The opposite is also true, that is, if {xn} is defined by
(5.10), then {xn} satisfies the linear recurrence whose characteristic polynomial is given by (5.9).

Let us go back to our exponential sums. Recall that Theorem 4.7 implies that

(5.11) SFq (en,k) =

D−1∑
j1=0

j1∑
j2=0

· · ·
jq−2∑
jq−1=0

cj1,...,jq−1
(k)
(

1 + ξ−j1D + · · ·+ ξ
−jq−1

D

)n
,

where cj1,...,jq−1
(k) are constant and D = pblogp(k)c+1. A natural consequence of this formula and the above

discussion is the linear recursivity of these exponential sums.

Theorem 5.7. Let n and k > 1 be positive integers, p be a prime and q = pr with r ≥ 1. Let D = pblogp(k)c+1.
The sequence {SFq (en,k)} satisfies the linear recurrence with integer coefficients whose characteristic poly-
nomial is given by

(5.12) Pq,k(X) =

D−1∏
a1=0

∏
0≤a2≤a1

· · ·
∏

0≤aq−1≤aq−2

(
X − (1 + ξa1D + · · ·+ ξ

aq−1

D )
)
.

The polynomial (5.12) may have repeated factors. However, the coefficients of (1 + ξ−j1D + · · ·+ ξ
−jq−1

D )n

in (5.11) are constant, which implies that the characteristic polynomial of the minimal linear recurrence
satisfied by {S(en,k)} does not have repeated factors. The repetition of factors in Pk(X) can be eliminated
by using least common multiples (lcm).



16 FRANCIS N. CASTRO, LUIS A. MEDINA, AND L. BREHSNER SEPÚLVEDA

Theorem 5.8. Let n and k > 1 be positive integers and p be a prime and q = pr with r ≥ 1. Let
D = pblogp(k)c+1. Let µa1,...,aq−1(X) be the minimal polynomial for the algebraic integer 1 + ξa1D + · · ·+ ξ

aq−1

D .
Then, {SFq (en,k)} satisfies the linear recurrence with integer coefficients whose characteristic polynomial is
given by

χq,k(X) = lcm
(
µa1,...,aq−1

(X)
)

0≤aq−1≤···≤a2≤a1≤D−1
.

Example 5.9. Consider the sequence {SF8(en,3)}. Theorem 5.7 implies that this sequence satisfies the
linear recurrence whose characteristic is given by

P8,3(X) =

3∏
a1=0

a1∏
a2=0

a2∏
a3=0

a3∏
a4=0

a4∏
a5=0

a5∏
a6=0

a6∏
a7=0

(X − (1 + ia1 + ia2 + ia3 + ia4 + ia5 + ia6 + ia7)) .

The minimal linear recurrence with integer coefficients that {SF8
(en,3)} satisfies has characteristic polynomial

given by

µ8,3(X) = (X − 4)(X + 4)
(
X2 + 16

) (
X2 − 8X + 32

) (
X2 − 4X + 8

) (
X2 + 4X + 8

)
.

It can be verified that µ8,3(X)|P8,3(X). The closed formula for this exponential sum is given (after simplifi-
cation) by

SF8(en,3) =
1

8

(
2
√

2
)n(

(9 + (−1)n)
(√

2
)n

+ 2 (2n + 9) sin
(nπ

4

)
− 6 sin

(
3nπ

4

)
− 6

(√
2
)n

cos
(nπ

2

))
.

6. Concluding remarks

We expressed exponential sums of linear combinations of elementary symmetric polynomials over finite
fields as multinomial sums. These expressions represent a computational improvement over the definition of
exponential sums. These expressions also provided a link between balancedness of symmetric polynomials
over Galois fields and a problem similar to the one of bisecting binomial coefficients. We also proved closed
formulas for exponential sums of linear combinations of elementary symmetric polynomials over Galois fields
by exploiting their multinomial sum representations. These closed formulas extend the work of Cai, Green
and Thierauf on the binary field to every finite field. Our closed formulas also provide a faster way to
compute the value of the exponential sums considered, hence we can understand better the behavior of these
exponential sums over Galois field. Moreover, we showed that the recursive nature of these exponential sums
is not special to the binary case and provide explicit linear recurrences the they satisfy. We hope our results
can be used to find families of symmetric functions with desired cryptographic properties over finite fields.
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