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Abstract. In this paper we extend the covering method for computing the exact 2-divisibility of exponential

sums of Boolean functions, improve results on the divisibility of the Hamming weight of deformations of

Boolean functions, and provide criteria to obtain non-balanced functions. In particular, we present criteria
to determine cosets of Reed-Muller codes that do not contain any balanced function, and to construct

deformations of symmetric functions that are not balanced. The use of the covering method together with
classifications of cosets of Reed-Muller codes obtained by the action of linear groups can improve the search

of balanced functions in Reed-Muller codes dramatically.

1. Introduction

The divisibility of exponential sums has been used to characterize and prove properties in coding the-
ory and cryptography (see [3], [14], [20], [22], [23], [24], [26]). The computation of bounds or the exact
2-divisibility of exponential sums of Boolean functions gives information on the Hamming weight of the
function, and can be used to obtain information on the covering radius and the weight distribution of certain
codes, which are properties that are important for the analysis of decoding algorithms. Moreover, these
properties are also related to cryptography as they can be used to study the non-linearity and balancedness
of Boolean functions.

In general, algebraic methods to estimate the p-divisibility of exponential sums over finite fields are non-
elementary. The covering method [5, 8, 9, 10, 23, 24] provides an elementary and intuitive way to estimate
or compute the exact p-divisibility of exponential sums, which is particularly convenient in the applications.
For example, the use of the covering method together with classifications of cosets of Reed-Muller codes
obtained by the action of linear groups [18] can improve the search of balanced functions in Reed-Muller
codes dramatically.

In this paper we follow the approach in [10] and extend the results of [8] to study the exact 2-divisibility of
exponential sums of polynomials whose minimal coverings might not be unique. The paper is self contained
and the results provide an elementary condition on the minimal coverings that allows us to construct families
of Boolean functions for which the “greater than or equal to” relation obtained in the classical results on
2-divisibility is replaced by either equality or strict inequality. In addition to study families of non balanced
functions, we study and, in certain cases improve, the 2-divisibility of the difference of the Hamming weights
of the Boolean functions F and deformations F+G, refining a version of Katz’s theorem for Boolean functions
obtained by Canteaut in [3].

2. Preliminaries

Let Fbe the binary field, Fn = {(x1, . . . , xn) |xi ∈ F, i = 1, . . . , n}, and F = F (x1, . . . , xn) be a polynomial
in n variables over F. Sometimes we use x instead of (x1, . . . , xn). Without loss of generality, we assume
throughout the rest of the paper that F is not a polynomial in some subset of the variables x1, . . . , xn.

Any Boolean function f : Fn −→ Fcan be identified with a unique Boolean polynomial F = xe1111 · · ·x
en1
n1 +

· · ·+xe1N1N · · ·x
enN
nN , where eij ∈ {0, 1}. The exponential sum of a polynomial F over Fis S(F ) =

∑
x∈Fn(−1)F (x).

Our aim is to compute the highest power of 2 dividing S(F ) and apply the results to the computation
of Hamming weights, and to the determination of deformed Boolean functions that are not balanced. In
general, if m is a non-zero integer, we denote this highest power of 2 by ν2(m), where m = 2ν2(m)a and a is
not divisible by 2. We also refer to ν2(m) as the exact 2-divisibility of m.
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One of the advantages of working over F is the identities (−1)x = 1− 2x, xd = x, where d > 0, x ∈ Fn.
Therefore

(2.1) S(F ) =
∑
x∈Fn

(−1)F (x) = 2n +
∑
λ

(−2)mλ
∑
x∈Fn

fλ(x).

Here, (−2)mλfλ(x) are monomials that are products of all possible choices of terms 2xe1i1i · · ·x
eni
ni in the

factors 1− 2xe1i1i · · ·x
eni
ni and mλ is the number of terms in that choice. It is clear that

ν2 (S(F )) ≥ ν2

(∑
λ

(−2)mλ
∑
x∈Fn

fλ(x)

)
.

It is important to note that ∑
x∈Fn

fλ(x) = 2l,

where l is the number of variables that are missing in fλ. Hence, the exact 2-divisibility of S(F ) can be
determined if we are able to “control” the smallest sets of monomials of F needed to cover all the variables.

Definition 2.1. Let C be a minimal set of monomials of F covering all variables. This is, every variable xi
is in at least one monomial of C, and C is minimal with this property. We call this set C a minimal covering
of F .

Example 2.2. For F = x1x2x3+x1x2x4+x1x4+x2x4 ∈ F[x1, . . . , x4], {x1x2x3, x1x4} and {x1x2x3, x1x2x4}
are minimal coverings of cardinality 2.

In [24], Moreno-Moreno used minimal coverings to prove the following improvement to the binary Ax’s
theorem [2]. In Section 3 we refine this theorem by providing sufficient conditions for the exponential sum
of a Boolean polynomial to have exact 2-divisibility.

Theorem 2.3. Let F be a polynomial over F and C be a minimal covering of F . Then,

ν2 (S(F )) ≥ |C|.

3. Using coverings to compute the 2-divisibility of exponential sums

To obtain the results in this paper we need to study the 2-divisibility of the terms
∑

x∈Fn fλ(x) in the
expansion of the exponential sum of F (2.1). In Lemma 3.1, proved in [8], we present conditions so that
the only term

∑
x∈Fn fλ(x) that is not divisible by 2|C|+1 is the term where fλ is the product of all the

monomials in C, where C is a minimal covering of F . This result, together with Lemma 3.2, will allow us to
determine the exact 2-divisibility of the exponential sum of F or to improve the existing bounds.

Lemma 3.1. Let F be a polynomial over F, and C be a minimal covering of F such that each monomial in
C has at least two variables that are not contained in any of the other monomials in C. With the notation of
(2.1), if fλ is a product of mλ < |C| monomials in C, then

2|C|+1 | 2mλ
∑
x∈Fn

fλ(x).

Lemma 3.2. Let F be a polynomial over F, and C1, . . . , Cc be all the minimal coverings of F . With the
notation of (2.1), if fλ is a product of mλ monomials in F such that not all of them belong to the same
minimal covering Ci, then

2|Ci|+1 | 2mλ
∑
x∈Fn

fλ(x).

Proof. If mλ > |Ci| the result is clear. Let T = 2mλ
∑

x∈Fn fλ(x) be such that fλ is a product of mλ ≤ |Ci|
monomials in F and not all of them belong to the same minimal covering. If mλ = |Ci|, then fλ misses at
least one variable because otherwise the monomials in the product would form another minimal covering of
F . Therefore 2|Ci|+1 | T .

If mλ < |Ci|, then fλ misses l ≥ |Ci| −mλ + 1 variables. Otherwise, if l ≤ |Ci| −mλ, one can construct a
covering C′ of F in the following way: for each missing variable in fλ, we select a monomial in C1 containing
the missing variable (it could happen that the same monomial in C1 contains more than one of the missing
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variables). The new covering C′ is the set of all the mλ monomials of F that formed fλ and at most
l ≤ |Ci| − mλ monomials from the covering C1 containing the missing variables. This implies that |C′| ≤
mλ+ |Ci|−mλ = |Ci|. If |C′| = |Ci|, then, since the coverings C1, . . . , Cc are all the minimal coverings, C′ = Cj ,
for some 1 ≤ j ≤ c, and the monomials that formed fλ would all be from the same covering, which is a
contradiction. If |C′| < |Ci|, we found a covering smaller than the minimal, which is also a contradiction. �

�

The estimates on the p-divisibility of exponential sums over finite fields given by the results of Ax [2] and
Katz [21] are general and tight in the sense that there are examples that attain their bounds. This implies
that improvements are possible only if additional conditions are imposed. For example, by considering the
binary case and using the covering method Moreno and Moreno were able to improve Ax’s result [24].

In the next theorem, the simple condition of each monomial in Ci having at least two variables that are
not contained in the other monomials of Ci provides families of Boolean functions for which the “greater
than or equal to” relation obtained in the classical results on 2-divisibility is replaced by either equality or
strict inequality. This key result is a generalization of Proposition 3.3 in [8] and it allows us to construct
families of non-balanced functions.

Theorem 3.3. Let F be a polynomial over F, and C1, . . . , Cc be all the minimal coverings of F . If, for any
1 ≤ i ≤ c, each monomial in Ci has at least two variables that are not contained in the other monomials of
Ci, then ν2 (S(F )) = |Ci| if c is odd, and otherwise ν2 (S(F )) ≥ |Ci|+ 1.

Proof. Products of the monomials fλ in each covering produce terms in (2.1) with

2mλ
∑
x∈Fn

fλ(x) = 2|Ci|
∑
x∈Fn

x1 · · ·xn = 2|Ci|.

Using Lemmas 3.1 and 3.2 we see that combinations of any other monomials produce terms with

2mλ
∑
x∈Fn

fλ(x) = 2aλ ,

where aλ > |Ci|. Therefore,

S(F ) = 2n + 2|Ci| · c+
∑
λ

2aλ , aλ > |Ci|

and the result follows. � �

The above theorem refines Moreno-Moreno’s Theorem 2.3 in certain cases. With it, if one can guarantee
that a Boolean polynomial F has an odd number of minimal coverings with certain property, then one can
compute the exact 2-divisibility of S(F ). Although, in general, it is not an easy task to find all the minimal
coverings of a given polynomial, one can easily construct polynomials for which one knows all the minimal
coverings and hence knows the exact 2-divisibility. We do this in Section 4 for several families of polynomials.
In particular, in Subsection 4.1.1 we use this method to construct cosets of Reed-Muller codes that do not
contain any balanced function and reduce the search for balanced functions dramatically.

The next example shows that, if we drop the condition of each monomial in the covering having at least two
variables that are not contained in the set of other monomials, we cannot guarantee the exact 2-divisibility
of S(F ).

Example 3.4. Consider F = x1 · · ·xn−1 +x1 + · · ·+xn. This polynomial has exactly one minimal covering
(of cardinality 2) but, since S(F ) = 0, ν2 (S(F )) 6= 2.

3.1. 2-Divisibility of deformations. Sometimes the 2-divisibility of the exponential sum of a deformation
F + G of a polynomial F can be obtained by only studying the 2-divisibility of the exponential sum of F .
By providing conditions on the coverings we can obtain information about families of polynomials F + Gi
by just studying the polynomial F . This can be used to study cosets of certain sets of polynomials, as we do
in Section 4. We now study the 2-divisibility of deformations of Boolean functions F +G and, in Subsection
3.2, apply the results to compare the Hamming weights of Boolean functions F to the Hamming weight of
deformations F + G. In Section 4 we apply the results to Reed-Muller codes and symmetric functions to
determine non-balanced functions.
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Theorem 3.5. Let F and G be Boolean functions. Suppose that the minimal coverings of F are the minimal
coverings of F + G and each monomial in a minimal covering CF has at least two variables that are not
contained in the other monomials of CF . Then,

S(F +G) ≡ S(F ) (mod 2|CF |+1).

Moreover, if the number of minimal coverings is odd, then

ν2 (S(F +G)) = ν2 (S(F )) = |CF |.

Proof. Suppose that the minimal coverings of F +G and F are the same and each monomial in a minimal
covering has at least two variables that are not contained in the other monomials. If the number of minimal
coverings of F is odd, then, by Theorem 3.3,

ν2 (S(F +G)) = ν2 (S(F )) = |CF |.

This implies that

S(F ) = 2|CF |kF and S(F +G) = 2|CF |kF+G,

where kF , kF+G are odd numbers. Therefore

S(F )− S(F +G) = 2|CF | (kF+G − kF ) = 2|CF |+1k,

k ∈ Z, because kF+G − kF is an even number. Hence, S(F +G) ≡ S(F ) (mod 2|CF |+1).
If the number of minimal coverings is even, Theorem 3.3 implies that 2|CF |+1 divides S(F ) and S(F +G).

Hence, S(F +G) ≡ S(F ) (mod 2|CF |+1). � �

If the number of minimal coverings of F is odd, Theorem 3.5 provides conditions so that the 2-divisibility
of S(F + G) − S(F ) is greater than the 2-divisibility of S(F ). In [19, Theorem 1.2], using a result from
[4], Hou presented a characterization for when the 2-divisibility of S(F + G) − S(F ) is greater than the 2-
divisibility of S(F ), where G is a linear polynomial. It is important to note that the method in [19] depends
on the deformation F +G being done by a linear polynomial G, whereas in Theorem 3.5, G is not restricted
to be linear. Also, Theorem 3.5 provides conditions for when ν2 (S(F +G)) = ν2 (S(F )) = |CF |, and get
that F +G is non-balanced.

The intuitive and simple condition of the deformations having the same coverings as the original function
has useful applications to the determination of non-balanced functions. This will be seen in Theorem 4.2
and Corollary 4.3, which are applied in Example 4.4 to explain the non existence of balanced functions in
certain cosets of Reed-Muller codes, and answers a question of Cusick and Cheon [11].

To get more precise approximations of the 2-divisibility of deformations one has to study the terms of the
expansion of the exponential sum of specific deformations as we do in the next proposition.

Proposition 3.6. Let F and G be Boolean functions where G is linear and no term of G is a term in F .
Suppose that C1, . . . , Cc are all the minimal coverings of F . If, for any 1 ≤ i ≤ c, each monomial in Ci has at
least two variables that are not contained in the other monomials of Ci, and if any set of |Ci| or less monomials
of F +G does not cover n− 1 variables unless they form a minimal covering, then ν2 (S(F +G)− S(F )) =
|Ci|+ 1 if c and the number of terms in G are odd, and otherwise ν2 (S(F +G)− S(F )) ≥ |Ci|+ 2.

Proof. Using the notation of (2.1) we have

S(F +G) = 2n +

[∑
λ

(−2)mλ
∑
x∈Fn

fλ(x)

]
+

[∑
λ′

(−2)mλ′
∑
x∈Fn

gλ′(x)

]
+

+

 ∑
λ

mλ≥1

∑
λ′

m
λ′≥1

(−2)mλ+mλ′
∑
x∈Fn

fλ(x)gλ′(x)


= S(F ) +

∑
λ′

(−2)mλ′
∑
x∈Fn

gλ′(x) +
∑
λ

mλ≥1

∑
λ′

m
λ′≥1

(−2)mλ+mλ′
∑
x∈Fn

fλ(x)gλ′(x).
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Therefore, ν2 (S(F +G)− S(F ))

= ν2

∑
λ′

(−2)mλ′
∑
x∈Fn

gλ′(x) +
∑
λ

mλ≥1

∑
λ′

m
λ′≥1

(−2)mλ+mλ′
∑
x∈Fn

fλ(x)gλ′(x)

 .

If mλ +mλ′ ≥ |Ci|+ 2, it is clear that

ν2

(
(−2)mλ+mλ′

∑
x∈Fn

fλ(x)gλ′(x)

)
≥ |Ci|+ 2.

Suppose that mλ +mλ′ < |Ci|+ 1. Then fλgλ′ misses at least |Ci|+ 2−mλ−mλ′ variables. Otherwise it
misses at most |Ci|+ 1−mλ−mλ′ variables. In this case, we could construct a set C with the monomials in
fλgλ′ , and |Ci|−mλ−mλ′ monomials from a covering Ci, each of them containing at least a missing variable.
This set C would have |Ci| monomials that cover at least n − 1 variables. If C is not a covering, there is a
contradiction to the assumption that any set of |Ci| or less monomials do not cover n−1 variables. If C forms
a covering, it would be minimal and contains a monomial of G, contradicting that each monomial in any
minimal covering contains at least two variables that are not contained in the other monomials. Therefore,
fλgλ′ misses at least |Ci|+ 2−mλ −mλ′ variables and

ν2

(
(−2)mλ+mλ′

∑
x∈Fn

fλ(x)gλ′(x)

)
≥ mλ +mλ′ + |Ci|+ 2−mλ −mλ′ = |Ci|+ 2.

Suppose that mλ +mλ′ = |Ci|+ 1 and the monomials in fλ do not form a covering. Then, the monomials
in fλgλ′ cannot cover all the variables. Otherwise, we could remove a monomial from gλ′ , and with the
remaining monomials and the monomials in fλ, form a set with |Ci| monomials from that cover n − 1
variables and do not form a covering. This contradicts one of the hypotheses. Therefore, there is at least
one variable missing in fλgλ′ , and

ν2

(
(−2)mλ+mλ′

∑
x∈Fn

fλ(x)gλ′(x)

)
≥ mλ +mλ′ + 1 = |Ci|+ 2.

The only missing case is when mλ +mλ′ = |Ci|+ 1 and the monomials in fλ cover all the variables. This
implies mλ = |Ci|, mλ′ = 1, and the monomials in fλ are the monomials in a minimal covering Ci. Then

(−2)mλ+mλ′
∑
x∈Fn

fλ(x)gλ′(x) = (−2)|Ci|+1.

Adding all the terms involving at least one monomial from F we have that∑
λ

∑
λ′

(−2)mλ+mλ′
∑
x∈Fn

fλ(x)gλ′(x) = (a)(c)2|Ci|+1 + 2|Ci|+2k,

where a is the number of terms in G and c is the number of minimal coverings of F .
Now, since G is linear, gλ′ is missing exactly n −mλ′ variables and n = ν2

(∑
λ′(−2)mλ′

∑
x∈Fn gλ′(x)

)
.

This implies that ν2 (S(F +G)− S(F )) = |Ci| + 1 if and only if c and the number of terms in G are odd.
Otherwise we get ν2 (S(F +G)− S(F )) ≥ |Ci|+ 2. � �

3.2. Application to Hamming weights of F and deformations F+G. The Hamming weight of Boolean
functions is an important property used in applications to coding theory and cryptography. The Hamming
weight associated with F , w(F ), is the number of x ∈ Fn such that F (x) = 1. If w0(F ) is the number of
x ∈ Fn such that F (x) = 0, then

S(F ) = w0(F )− w(F )

and
2n = w(F ) + w0(F ).

This implies that

w(F ) = 2n−1 − 1

2
S(F ),

and this gives a correspondence between results on exponential sums and Hamming weights of Boolean
functions.
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In [3], Canteaut used the next result to study the weight distribution of cosets of first-order Reed-Muller
codes.

Theorem 3.7 (Canteaut). Let F,G be Boolean functions of degrees d1 and d2 respectively, d2 < d1. Then,

w(F +G) ≡ w(F ) (mod 2d
n−d2
d1
e).

As we mentioned before, estimates on the p-divisibility of exponential sums over finite fields given by the
results of Ax [2] and Katz [21] are general and tight in the sense that there are examples that attain their
bounds. This implies that improvements are only possible only if some additional conditions are imposed.
Canteaut’s result is a refinement of Katz’s theorem for the Boolean case, and tight for this case. The result
can only be improved by imposing additional conditions as we do next.

Using that

w(F +G)− w(F ) = −1

2
(S(F +G)− S(F )) ,

we have S(F +G) ≡ S(F ) (mod 2r) if and only if w(F +G) ≡ w(F ) (mod 2r−1), and the results in Section
3.1 can be used to estimate the Hamming weight of deformations. The next results are direct consequences
of Theorem 3.5 and Proposition 3.6.

Theorem 3.8. Let F and G be Boolean functions. Suppose that the minimal coverings of F are the minimal
coverings of F + G and each monomial in a minimal covering CF has at least two variables that are not
contained in the other monomials of CF . Then,

w(F +G) ≡ w(F ) (mod 2|CF |).

Moreover, if the number of minimal coverings is odd, then

ν2 (w(F +G)) = ν2 (w(F )) = |CF | − 1.

Since |CF | ≥ dn−d2d1
e, there are cases when the above result improves Theorem 3.7 as it is illustrated in

the next example.

Example 3.9. Consider

F = x1x2x3x4 + x3x4x5 + x5x6x7 + x7x8x9

and

G = x1 + · · ·+ x9.

Both F and F +G have the same unique minimal covering

C = {x1x2x3x4, x5x6x7, x7x8x9} .
Theorem 3.8 gives w(F +G) ≡ w(F ) (mod 8), but Theorem 3.7 gives w(F +G) ≡ w(F ) (mod 4). Moreover,
we get that the exact 2-divisibility of w(F + G) is 2. It can be verified that w(F ) = 132, w(F + G) = 260
and w(F +G)− w(F ) = 27.

In some special cases one can refine the results by obtaining exact divisibility or improving the divisibility
obtained in previous results.

Proposition 3.10. Let F and G be Boolean functions where G is linear and no term of G is a term in
F . Suppose that C1, . . . , Cc are all the minimal coverings of F . If, for any 1 ≤ i ≤ c, each monomial in Ci
has at least two variables that are not contained in the other monomials of Ci, and if any set of |Ci| or less
monomials of F +G does not cover n− 1 variables unless they form a minimal covering, then

ν2 (w(F +G)− w(F )) = |CF |
if c and the number of terms in G are odd, and otherwise ν2 (w(F +G)− w(F )) ≥ |CF |+ 1.

Example 3.11. Consider the polynomial F of degree 5 and n = 11 variables,

F = x1x2x3x4x5 + x4x5x6 + x1x2x7 + x8x9x10 + x6x7x11

and

F +Ga1,...,a10,a11 = x1x2x3x4x5 + x4x5x6 + x1x2x7 + x8x9x10 + x6x7x11 +

11∑
i=1

aixi.
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We have
w(F +G)− w(F ) ∈ {216, 264, 312, 360, 376, 392, 408, 424, 456, 504}

whenever
∑11
i=1 ai is odd, and

w(F +G)− w(F ) ∈ {288 = 25 · 9, 336 = 24 · 21, 368 = 24 · 23, 384 = 27 · 3,
400 = 24 · 25, 416 = 25 · 13, 432 = 24 · 27, 480 = 25 · 15, 528 = 24 · 33}.

if
∑11
i=1 ai is even. Note that Proposition 3.10 predicts the 2-divisibility of

ν2 (w(F +G)− w(F )) = 3

if
∑11
i=1 ai is odd and

ν2 (w(F +G)− w(F )) ≥ 4

if
∑11
i=1 ai is even. Note that, in the latter case, ν2(w(F +G)− w(F )) ∈ {4, 5, 7}.

Corollary 3.12. Let F = F1 + · · · + Fr be such that the Fi’s are monomials of disjoint support, of degree
greater than or equal to 2, and G be linear. Then, ν2 (w(F +G)− w(F )) = r if the number of terms in G is
odd, and otherwise ν2 (w(F +G)− w(F )) ≥ r + 1.

4. Non-balanced functions in Reed-Muller codes and symmetric functions

A Boolean function F in n variables is said to be balanced if the function is equal to one in half of the
values of x ∈ Fn. It is easy to see that this happens if and only if S(F ) = 0. If one can compute the exact
2-divisibility of S(F ), then S(F ) 6= 0 and F is not balanced. Hence, if one can describe Boolean functions
satisfying some of the conditions of Theorem 3.3, one is describing Boolean functions that are not balanced.

4.1. Families of non-balanced functions in Reed-Muller codes. The k-th order Reed-Muller code of
length 2n, R(k, n), can be identified with the set of Boolean functions in n variables and degree less than
or equal to k. A Boolean function in R(k, n) is balanced if and only if its Hamming weight is 2n−1. Much
work has been done studying the weight distribution of these codes but no general formula is known for
3 ≤ k ≤ n− 4.

The 2-divisibility of the elements in cosets of first-order Reed-Muller codes has been studied in many
papers, for example [3, 16, 17]. In [18] Hou counted the number of orbits when the general linear group
GL(n, 2) acts on R(k, n)/R(k−1, n) for 6 ≤ n ≤ 11. Cosets of R(k−1, n) belonging to the same orbit have the
same weight distribution and hence the same number of balanced functions. This implies that to know the
number of balanced functions of all the cosets in an orbit, it is enough to study a coset representative for the
orbit. In the same paper, Hou presented representatives for each of the different orbits in R(k, n)/R(k−1, n)
for k = 3, 6 ≤ n ≤ 8.

The next example illustrates how one can use classifications of cosets and Theorem 3.3 to limit the search
for balanced functions in R(k, n)/R(k − 1, n).

Example 4.1. Consider the classification of the cosets of R(3, 8)/R(2, 8) presented in Table 2 of [18]. By
inspection, we can identify 15 coset representatives where at least half of the functions in each coset are not
balanced and provide constructions for these non-balanced functions. To illustrate some of the constructions,
let 1 ≤ ai, bi ≤ n and G(xa1xb1 , xa2xb2 , . . . , xatxbt) ∈ R(2, n) be a polynomial that does not have xaixbi as
a term for 1 ≤ i ≤ t.

(1) Let F6 be the representative of an orbit of R(3, 8)/R(2, 8) included in Table 2 of [18]: F6 = x1x2x3 +
x1x4x5+x2x4x6+x3x5x6+x4x5x6. Then, any polynomial of the form F ′6 = F6+x7x8+G(x7x8) has
a unique minimal covering C = {x1x2x3, x4x5x6, x7x8}. Theorem 3.3 implies that ν2 (S(F ′6)) = 3,

and therefore F ′6 is not balanced. There are 2(8
2)−1+(8

1) = 235 non-balanced polynomials of this form
associated to F6.

(2) Let F15 be the representative of an orbit of R(3, 8)/R(2, 8) included in Table 2 of [18]: F15 =
x1x2x3 + x2x4x5 + x6x7x8 + x1x4x7. Then, any polynomial of the form F ′15 = F15 +G(x4x5, x1x3)
has a unique minimal covering C = {x1x2x3, x2x4x5, x6x7x8}. Therefore F ′15 is not balanced and

there are 2(8
2)−2+(8

1) = 234 polynomials of this form.
Also, any polynomial of the form F ′′15 = F15+x1x3+x4x5+G(x4x5, x1x3) has exactly three minimal

coverings C1 = {x1x2x3, x2x4x5, x6x7x8}, C2 = {x2x4x5, x6x7x8, x1x3}, C3 = {x2x4x5, x6x7x8, x4x5}.
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Therefore F ′′15 is not balanced and there are 2(8
2)−2+(8

1) = 234 non-balanced polynomials of this form.
There are 235 non-balanced polynomials of the form F ′15 or F ′′15 associated to the representative F15.

Note that the form of the non-balanced polynomials can be used, together with the group action, to
determine what types of polynomials to avoid in the search for balanced functions.

One can give general descriptions of functions in cosets of Reed-Muller codes that are not balanced as is
illustrated in the next theorem.

Theorem 4.2. Let k ≥ 2, n = ks + r, r = 0 or 2 ≤ r < k. Let F1, . . . , Fs be monomials of degree k and
disjoint support, M = {xi1 , . . . , xir} be the set of variables not covered by any monomial F1, . . . , Fs, and Hmi

be a monomial of degree ki, r ≤ ki < k that contains all the variables in M . Let F be a polynomial where each
term does not contain at least one of the variables in M , deg(F ) ≤ k, and each term of F has at least one
variable in common with any other term in F+Fi, for 1 ≤ i ≤ s. If F ′ = F1+· · ·+Fs+Hm1

+· · ·+Hmh+F ∈
R(k, n), for h an odd integer, and xi1xi2 · · ·xir is not a term in G ∈ R(k − l, n), where 1 ≤ k − l ≤ r if
r 6= 0, then F ′ +G is not balanced.

Proof. If r = 0, then C = {F1, . . . , Fs} is the unique minimal covering of F ′. If 2 ≤ r < k, then Ci =
{F1, . . . , Fs, Hmi} forms a minimal covering of F ′ for each 1 ≤ i ≤ h. Any covering containing monomials
from F will not be minimal. The number of minimal coverings of F is odd because h is odd.

Since deg(G) < k, any minimal covering of F ′ + G ∈ F ′ + R(k − l, n) will contain F1, . . . , Fs. Since
Xi1Xi2 · · ·Xir is not a term in G, no single term of G will contribute the r missing variables and we would
need more than one term from G to form a covering of F ′+G. Therefore, any covering of F ′+G that includes
terms from G cannot be minimal. This implies that the minimal coverings of F ′ and F ′ +G are the same.
Since each monomial in the covering contributes at least two new variables, and the number of minimal
coverings is odd, by Theorem 3.5, ν2 (S(F ′ +G)) = |Ci| and therefore F ′ +G is not balanced. � �

4.1.1. Cosets of Reed-Muller codes that do not contain any balanced function. A coset F + R(k − 1, n) of
R(k, n)/R(k − 1, n) is a set of deformations of the Boolean function F . Combining classifications of the
cosets in R(k, n)/R(k− 1, n) with the results in Section 3 one can improve the search for balanced functions
dramatically. Cusick and Cheon [11] studied the number of balanced functions in representatives of the
cosets of R(k, n)/R(k − 1, n) for k = 3, n = 6, 7. They found interesting to note the “uneven distribution
of the balanced functions in the cosets of R(2, 6) (where two cosets have no balanced functions at all),
...”. If one can describe Boolean functions F such that F + G satisfy the conditions of Theorem 3.5 for all
G ∈ R(k − l, n), one gets that the coset F + R(k − l, n) does not contain any balanced function. The next
Corollary explains the behavior noticed by Cusick and Cheon, and, in general, can be used to determine a
priori cosets that do not contain any balanced functions, saving computational time.

Corollary 4.3. Suppose that F ′ = F1 + · · ·+Fs+Hm1
+ · · ·+Hmh +F ∈ R(k, n), satisfies the conditions of

Theorem 4.2. Then, the coset F ′+R(k− l, n) ∈ R(k, n)/R(k− l, n) does not contain any balanced function,
where 1 ≤ k − l < r if r 6= 0.

Proof. Just note that, since k − l is strictly less than r, xi1xi2 · · ·xir is not a monomial in G for any
G ∈ R(k − l, n). � �

This corollary can be used to construct cosets that do not contain any balanced function, as we see in the
next example.

Example 4.4. Inspecting Table 1 of [11] one notices that F4 = x1x2x3+x4x5x6 and F6 = x1x2x3+x4x5x6+
x1x4x5 + x2x4x6 + x3x5x6 satisfy the conditions of the previous corollary and hence, the cosets F4 +R(2, 6)
and F6 + R(2, 6) do not contain any balanced functions. This explains the behavior noticed by Cusick and
Cheon. Note that these are 2 of the 6 cosets of R(3, 6)/R(2, 6) in the classification in [18]. Any other coset
in their orbits will behave in the same way. From (6.16) in [18] we get that 523,776 of the 1,048,576 cosets
in R(3, 6)/R(2, 6) do not contain any balanced functions; almost half of the search for balanced functions
could have been avoided by using the covering method.

Corollary 4.5. Suppose that n = ks, k ≥ 2, l ≥ 1. Then, any coset of the form F1 + · · ·+ Fs +R(k− l, n),
where F1, . . . , Fs are monomials of degree k and disjoint support, does not contain any balanced function.
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It is not difficult to find other sufficient conditions that guarantee cosets of Reed-Muller codes that do not
contain any balanced function. Constructing polynomials with certain minimal coverings gives lower bounds
on the number of cosets in R(k, n)/R(k − l, n) that consist only of non-balanced functions.

Example 4.6. Let k ≥ 2, n = 2k and c =

(
2k
k

)
2

. Then, there are at least

2c−1 +

b c−1
2 c∑
j=0

(
c

2j + 1

)((
2k

k

)
− 4j − 2

)
cosets in R(k, 2k)/R(k − 1, 2k) that do not contain any balanced functions.

4.2. Deformations of elementary symmetric Boolean functions that are not balanced. Symmetric
Boolean functions in n variables are Boolean functions whose value do not depend on the permutation of its
input. These functions are simpler to study and easier to implement. Elementary symmetric Boolean func-
tions are the building blocks for all symmetric Boolean functions. There is a unique elementary symmetric
Boolean function σn,k in n variables and degree k. From now on, k ≥ 2 and we use σk to denote σn,k. This
is, σk = σn,k =

∑
1≤j1<j2<···<jk≤n xj1 · · ·xjk .

It has been proved that almost all the elementary symmetric Boolean functions are non-balanced ([6],
[7], [12], [13], [15], [25]), and Cusick-Li-Stǎnicǎ conjectured that the only nonlinear balanced elementary
symmetric Boolean functions are of degree k = 2t and have n = 2t+1D − 1 variables, where D is odd. This
conjecture has been generalized to fields of any characteristic in [1].

To use the covering method to provide families of deformations F = σk + G of elementary symmetric
Boolean functions that are non-balanced, we need to find conditions so that the minimal coverings of F =
σk + G and σk are the same. We also need to compute the number of minimal coverings of σk. Imposing
conditions on the degree of G we can easily obtain that the minimal coverings of F = σk +G and σk are the
same.

Lemma 4.7. Let n = ks+ r, k, s > 1, 0 ≤ r < k, and F = σk +G. Suppose that deg(G) < k if k | n, and
deg(G) < r if k - n. Then C is a minimal covering of F if and only if C is a minimal covering of σk.

In general, it is hard to count the number of minimal coverings for arbitrary σk. But writing n = ks+ r,
where 0 ≤ r < k, one can divide the problem in cases and find sufficient conditions so that one can compute
the number of minimal coverings. We illustrate this by presenting results when r = 0, k − 1.

Lemma 4.8. Let n = ks, k, s > 1. The number of minimal coverings of σk is

c =

(
n
k

)(
n−k
k

)(
n−2k
k

)
· · ·
(
k
k

)
s!

=
n!

(k!)ss!
.

Using the 2-divisibility of c, Lemma 4.7, and Theorem 3.3, one can prove the next results.

Proposition 4.9. Let n = ks, k, s > 1, and F = yσk (xm+1, · · · , xm+n) + G, where y = 1 if m = 0 and
otherwise y = x1 · · ·xm, and deg(G) < k+m. Then, ν2 (S(F )) = s if k = 2l, and otherwise ν2(S(F )) ≥ s+1.
In particular, if k = 2l, then F is not balanced.

Suppose that n = ks+ k − 1, where s ≥ 1, k > 2, and consider F = σk +G, where deg(G) < k − 1. With
a counting argument we get that number of minimal coverings of σk is

c =
ks
(
n
k

)(
n−k
k

)(
n−2k
k

)
· · ·
(
2k−1
k

)
2 (s!)

=
ks (n!)

2 (s!) (k!)
s

(k − 1)!
.

Proposition 4.10. Let n = ks+ k− 1, s ≥ 1, k > 2, and F = yσk (xm+1, · · · , xm+n) + G, where y = 1 if
m = 0 and otherwise y = x1 · · ·xm, and deg(G) < k +m− 1. Then, ν2 (S(F )) = 2 if k = 2l + 1 and s = 1,
and otherwise ν2 (S(F )) ≥ s+ 2. In particular, if k = 2l + 1 and s = 1, then F is not balanced.
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[6] Francis N. Castro, Oscar E. González, and Luis A. Medina. A divisibility approach to the open boundary cases of Cusick-
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