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Abstract. In this paper we compute the exact 2-divisibility of exponential

sums associated to elementary symmetric Boolean functions. Our computation
gives an affirmative answer to most of the open boundary cases of Cusick-Li-

Stǎnicǎ’s conjecture. As a byproduct, we prove that the 2-divisibility of these

families satisfies a linear recurrence. In particular, we provide a new elementary
method to compute 2-divisibility of symmetric Boolean functions.

1. Introduction

The theory of Boolean functions is one of the most active areas in combinatorics
because of its applications and its beauty. In general, understanding the behavior
of Boolean functions presents a challenge to mathematicians. The subject can be
studied from the point of view of complexity theory or from the algebraic point of
view as we do in this paper, where we compute the 2-divisibility of some families
of symmetric Boolean functions.

Divisibility of Boolean functions is an active area of research and it has been
used to classify some families, see [3, 4, 15, 19]. This part of the subject can be
studied using the theory of exponential sums; a theory that is rich in literature,
for example, see [1, 2, 7, 8, 9, 18, 20, 21, 22, 23, 24]. In this work, we study the
2-divisibility of some families of elementary symmetric Boolean functions. The
number of variables and the degree of these Boolean functions come from the open
cases of the Cusick-Li-Stǎnicǎ conjecture ([10, 25]).

In [10], Cusick, Li and Stǎnicǎ stated the following conjecture:

There are no nonlinear balanced elementary symmetric Boolean functions except
for degree k = 2l and 2l+1D − 1-variables, where l,D are positive integers.

In [11], the same authors proved the conjecture for elementary symmetric functions
of odd degree (they also proved other cases). In [17], Gao, Liu, and Zhang proved
most of the cases of the conjecture when the number of variables of the elementary
symmetric function is congruent to 3 mod 4. Recently in [25], Su, Tang and Pott
presented the known results about the conjecture. They also gave an affirmative
answer to the conjecture for many open cases by proving that the Hamming weight
of the considered elementary symmetric functions was less than 2n−1. In [5], Castro
and Medina proved an asymptotic version of the conjecture. Moreover, in [13], Guo,
Gao and Zhao refined the result of [5] and provided a bound N(k) such that the
conjecture is true for n > N(k). The bound N(k) depends on the degree k of
the elementary Boolean function. In [6], Castro and Medina proved an asymptotic
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generalization of Cusick-Li-Stǎnicǎ’s conjecture. The only remaining open cases
of Cusick-Li-Stǎnicǎ’s conjecture are stated in Conjecture 1.1 ([25]). To properly
state them, we need the following definition:

Definition 1.1. For x ∈ Fn2 , let w2(x) be the Hamming weight of x, in other words,
w2(x) is the number of entries of x that are one. For example, w2((0, 1, 1, 0, 1)) = 3.
If d is any non-negative integer, then we define the Hamming weight of d, denoted
by w2(d), as the number of 1’s in the binary representation of d.

Conjecture 1.1 (Cusick-Li-Stǎnicǎ). Let D ≥ 3 be odd, a ≥ 1, n = 2a+1D + r,
r = −1, 0, 1, 2. The elementary symmetric Boolean function σk(X1, . . . , Xn) is not
balanced in the following cases:

(1) k = 2a+1d′, w2(d′) ≥ 2, and 2 ≤ d′ � D − 1

2
for r = −1, 0, 1, 2.

(2) k = 2a+1d′ + 2a, w2(d′) ≥ 2, and 2 ≤ d′ � D − 1

2
for r = 0, 1, 2.

In this paper we introduce a new approach to compute the exact 2-divisibility of
elementary symmetric functions. In general, computing the exact 2-divisibility of
Boolean functions is a hard problem due to their “randomness”. We prove that the
2-divisibility of the families considered here satisfies a linear recurrence relation.
As a byproduct, we prove that Cusick-Li-Stǎnicǎ’s conjecture holds for most of the
open boundary cases. Our method to compute divisibility is elementary and can
be applied to perturbations of elementary symmetric Boolean functions. However,
we omit these results because they are not directly linked to the open cases of
Conjecture 1.1.

The divisibility of the entries of the rows in Pascal’s triangle has been studied in
[12, 14, 16]. In this work, to obtain our results we need to estimate the divisibility
of subsequences of the entries of the rows in Pascal’s triangle. Those results are of
independent interest.

2. Preliminaries

Let F be the binary field, Fn = {(x1, . . . , xn)|xi ∈ F, i = 1, ..., n}, and F (X) =
F (X1, . . . , Xn) be a polynomial in n variables over F. The exponential sum associ-
ated to F over F is:

(1) S(F ) =
∑

x1,...,xn∈F
(−1)F (x1,...,xn).

A Boolean function F is called balanced if S(F ) = 0, i.e. the number of zeros and
the number of ones are equal in the truth table of F . This property is important
for some applications in cryptography. Our aim is to compute the highest power
of 2 dividing S(F ) for the case when F (X) is an elementary symmetric Boolean
function. In general, if m is a non-zero integer, we denote the highest power of 2
that divides m by ν2(m), where m = 2ν2(m)a and a is not divisible by 2. We refer
to ν2(m) as the 2-adic valuation of m or as the exact 2-divisibility of m.

Let σn,k = σk(X1, . . . , Xn) be the elementary symmetric polynomial in n vari-
ables of degree k. For example,

(2) σ5,3 = σ3(X1, . . . , X5) =
∑

1≤i1<i2<i3≤5

Xi1Xi2Xi3 .
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It is not hard to see that, in the case of an elementary symmetric polynomial, the
exponential sum can be written as

(3) S(σn,k) =

n∑
j=0

(
n

j

)
(−1)(

j
k).

Define N(n, k) =

{
0 ≤ j ≤ n |

(
j

k

)
≡ 1 mod 2

}
. Note that

S(σn,k) = 2n − 2
∑

j∈N(n,k)

(
n

j

)
.(4)

Thus, if S(σn,k) 6= 0, then

(5) ν2(S(σn,k)) = ν2

2
∑

j∈N(n,k)

(
n

j

) .

In other words, computing the exact divisibility of
∑

j∈N(n,k)

(
n

j

)
yields the exact

divisibility of S(σn,k).
We point out that the classical theorem of Ax ([2]) implies

(6) ν2(σn,k) ≥
⌈n
k

⌉
.

For our families, Ax’s result implies that 2ν divides S(σn,k) where ν = 2 or 3. Our
results greatly improve Ax’s theorem for these families.

3. Boundary case for r = 0

In this section we consider the boundary case of Cusick-Li-Stǎnicǎ’s conjecture
for r = 0. In other words, we explore whether or not the exponential sum of σn,k
is different from 0 for n = 2aD and

k = 2a
(
D − 1

2

)
or k = 2a

(
D − 1

2

)
+ 2a−1 = 2a−1D,

where D ≥ 3 is odd and a ≥ 2. Notice that we replaced the power 2a+1 in
Conjecture 1.1 with 2a. Therefore, Cusick-Li-Stǎnicǎ’s conjecture is now re-stated
as:

Conjecture 3.1 (Cusick-Li-Stǎnicǎ). Let D ≥ 3 be odd, a ≥ 2, n = 2aD + r,
r = −1, 0, 1, 2. The elementary symmetric Boolean function σk(X1, . . . , Xn) is not
balanced in the following cases:

(1) k = 2ad′, w2(d′) ≥ 2, and 2 ≤ d′ � D − 1

2
for r = −1, 0, 1, 2.

(2) k = 2ad′ + 2a, w2(d′) ≥ 2, and 2 ≤ d′ � D − 1

2
for r = 0, 1, 2.

Since D is an odd natural number, then it has the form D = 2im − 1, where
i ≥ 1 and m is an odd natural number. We re-write n = 2a(2im− 1) + r and

k = 2a(2i−1m− 1) or k = 2a(2i−1m− 1) + 2a−1.
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We show the veracity of Cusick-Li-Stǎnicǎ’s conjecture for a large part of this
boundary case. We achieve this by computing the exact 2-divisibility of the expo-
nential sum for families of polynomials that are included in this case. We study
first the case n = 2a(2im− 1) and k = 2a(2i−1m− 1) + 2a−1. It turns out that this
case is simpler than the case k = 2a(2i−1m− 1). We start with an example.

Example 3.1. Suppose that a = 2 and i = 3. In this case, n = 32m − 4 and
k = 16m − 2. The first few values of ν2(S(σn,k)), when m runs through the odd
positive integers, are given by

4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 5, 6, 6, 7, · · · .
In Figure 1 you can see a graphical representation of these numbers. Note that this

10 20 30 40 50 60
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Figure 1. Graphical representation of ν2(S(σ32m−4,16m−2)).

information suggests that S(σ32m−4,16m−2) is not balanced, since its valuation is
always finite. Moreover, it seems by observing the data that there is a pattern in
it. We will try to describe it. We write m = 2j − 1 and let

(7) tj = ν2(S(σ32((2j−1)−4),16((2j−1)−1)−2)).

We are now interested in the values of the sequence t1, t2, · · · , ts, · · · , which are
plotted in Figure 1. To decipher the pattern, we plot the differences of the values
tj+1− tj , as in Figure 2. The alert reader may observe a pattern in this graph. We

10 20 30 40 50 60
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-2
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1

Figure 2. The graph of the values of tj+1 − tj .

now multiply the graph of Figure 2 by −1 and add 1 to the result to obtain the
graph in Figure 3. The reader can identify this picture with the 2-adic valuation of
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10 20 30 40 50 60

1

2

3

4

5

Figure 3. The graph of the values of tj − tj+1 + 1.

the integers, i.e. ν2(j) for j = 1, 2, 3, · · · . In other words, it looks like the sequence
{tj}j∈N satisfies the recurrence

(8) tj − tj+1 + 1 = ν2(j).

The general solution to (8) is w2(2j − 1) + c, where c is some constant. Thus, if all
of this is true, then

(9) ν2(S(σ32m−4,16m−2)) = w2(m) + c.

In Figure 4 you can see a graphical representation of ν2(S(σ32m−4,16m−2)) versus
w2(m) for m odd. The blue graph represents ν2(S(σ32m−4,16m−2)) while the red

0 10 20 30 40 50

2

4

6

8

Figure 4. Graphical representation of ν2(S(σ32m−4,16m−2)) vs
w2(m) for m odd.

graph represents w2(m). Observe that it appears that c = 3, i.e.

(10) ν2(S(σ32m−4,16m−2)) = w2(m) + 3.

Example 3.2. Suppose now that a = 2 and i = 4. In this case, n = 64m− 4 and
k = 32m − 2. The first few values of ν2(S(σn,k)), when m runs through the odd
positive integers, are given by

5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 8, 7, 8, 8, 9, 6, 7, 7, 8, · · · .

Again, note that these values are simply the weight of the odd numbers shifted by
a constant, which in this case is 4.
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In general, computer experiments suggest that the 2-adic valuation of S(σn,k),

for n = 2a(2im− 1) and k = 2a(2im− 1) + 2a−1, depends on i and on the weight
of m, but not on a. This dependence is stated in the next theorem.

Definition 3.3. Let m = 2i0 + · · · + 2ir be the 2-expansion of m. We define the
support of m by

(11) supp(m) = {i0, . . . , ir}.

Theorem 3.2. Suppose that a, i, and m are positive integers with m odd. Let
n = 2a(2im− 1), k = 2a(2i−1m− 1) + 2a−1. Then

(12) ν2(S(σn,k)) = w2(m) + i,

and so σn,k is not balanced. In particular, if we write m = 2j − 1 and let

(13) tj = ν2(S(σ2a(2i(2j−1)−1),2a(2i−1(2j−1)−1)+2a−1)),

then {tj}j∈N satisfies the recurrence,

t1 = i+ 1,(14)

tj+1 = tj − ν2(j) + 1.

Thus, Cusick-Li-Stǎnicǎ’s conjecture is true for n = 2a+1D and k = 2aD.

Proof. Recall that

(15) ν2(S(σn,k)) = ν2

 ∑
j∈N(n,k)

(
n

j

)+ 1.

Therefore, we must show that

(16) ν2

 ∑
j∈N(n,k)

(
n

j

) = w2(m) + i− 1.

We start by noticing that n = 2k, and so

(17) ν2

((
n

k

))
= w2(n).

Suppose that m = bs · 2s + bs−1 · 2s−1 + · · ·+ b1 · 2 + 1 with s ≥ 1. Lucas’ Theorem
implies that N(n, k) = {k + m′ | supp(k) ∩ supp(m′) = ∅, k + m′ ≤ n}. Since
n = 2a+i+1 + b1 · 2a+i+2 + · · ·+ bs · 2a+i+s+1 − 2a, then

(18) ν2

((
n

k

))
= w2(n) = w2(m) + i− 1.

Therefore, if we prove that

(19) ν

((
n

k +m′

))
≥ w2(m) + i

for m′ 6= 0, then we are done.
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A direct calculation shows that

ν2

((
n

k +m′

))
= w2(k +m′) + w2(n− k −m′)− w2(n)

= w2(m) + i− 1 + w2(m′) + w2(2a+im− 2a −m′)− w2(m)− i+ 1

= w2(m′) + w2(2a+im− 2a −m′)(20)

= w2(m′) + w2(k −m′)
≥ 1 + w2(k)

= w2(m) + i

Observe that w2(k −m′) ≥ w2(k) because supp(k) ∩ supp(m′) = ∅. We conclude
that

(21) ν2(S(σn,k)) = w2(m) + i.

Note that (14) follows from (21). This completes the proof. �

We now consider the case n = 2a(2im − 1) and k = 2a(2i−1m − 1). As before,
we start the study with an example.

Example 3.4. Let a = 2 and i = 2. Then n = 16m − 4 and k = 8m − 4. The
first few values of ν2(S(σn,k)), when m runs through the odd positive integers, are
given by

3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, · · ·
As before, it appears that the valuation depends on the weight of m, in this case
ν2(σ16m−4,8m−4) = w2(m) + 2. In fact, the reader can check via computer experi-
ments that as long as i ≥ 2, the 2-adic valuation of S(σn,k) is always w2(m) + 2.
In other words, as for the previous k, the 2-adic valuation does not depend on a.
However, a major difference is that now the 2-adic valuation does not depend on i
either.

We now present the proof this fact. Our proof of the theorem depends on the
following elementary result.

Lemma 3.3. Let a, i,m be natural numbers with i ≥ 3 and m odd. Write m =
bs · 2s + bs−1 · 2s−1 + · · ·+ b1 · 2 + 1 with s ≥ 1. Let bs−l1 , bs−l2 , . . . , bs−lr be all the
bt in the expansion of m such that bt = 0. Define

ba,i = δ1 · 2a+i−1+(s−l1) + · · ·+ δr · 2a+i−1+(s−lr)

Then,

(22)
(2a+i−1 ·m− 2a + ba,i + 2a+i−1) · · · (2a+i−1 ·m− 2a + ba,i + 1)

(2a+i−1 ·m− ba,i) · · · (2a+i−1 ·m− ba,i − 2a+i−1 + 1)
≡ 3 mod 4.

Remark. Our proof of Lemma 3.3 is elementary, but rather tedious (it depends on a
double induction!). As a result, we decided not to present the proof of the lemma in
this manuscript. However, the interested reader can find our proof on the following
website:

http://emmy.uprrp.edu/lmedina/papers/cusick/

Theorem 3.4. Let a, i,m be natural numbers with i ≥ 2 and m odd. Suppose that
n = 2a(2im− 1) and k = 2a(2i−1m− 1). Then,

ν2(S(σn,k)) = w2(m) + 2,
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and so σn,k is not balanced. In particular, if we write m = 2j − 1 and let

(23) tj = ν2(S(σ2a(2i(2j−1)−1),2a(2i−1(2j−1)−1))),

then {tj}j∈N satisfies the recurrence,

t1 = 3,(24)

tj+1 = tj − ν2(j) + 1.

Thus, Cusick-Li-Stǎnicǎ’s conjecture is true for n = 2a+1D and k = 2a(D − 1) for
D ≡ 3 mod 4.

Proof. We only present the proof for i ≥ 3. The case i = 2 can be treated in a
similar manner.

Suppose that m is odd. Then m can be written as m = bs · 2s + bs−1 · 2s−1 +
· · ·+ b1 · 2 + 1 with s ≥ 1. Let bs−l1 , bs−l2 , . . . , bs−lr be all the bt in the expansion
of m such that bt = 0. By Lucas’ Theorem j ∈ N(n, k) if and only if

j = k+ δ1 · 2a+i−1+s−l1 + δ2 · 2a+i−1+s−l2 + · · ·+ δr · 2a+i−1+s−lr + tr+1 · 2a+i−1 + δ,

where δi ∈ {0, 1} and 0 ≤ δ ≤ 2a− 1. We divide the proof in two cases: m = 1 and
m > 1.

Case m > 1: We consider first the case m > 1. Let

ba,i = δ1 · 2a+i−1+(s−l1) + · · ·+ δr · 2a+i−1+(s−lr),

la,i = k + ba,i,

l′a,i = k + ba,i + 2a+i−1,

where δt ∈ {0, 1}, (s− lt) is such that 2s−lt does not appear in the expansion of m,
and at least one of the δt 6= 0. We will show that

(a) ν2

((
n

la,i

)
+

(
n

l′a,i

))
≥ w2(m) + 2,

(b) ν2

((
n

k

)
+

(
n

k + 2a+i−1

))
= w2(m) + 1, and

(c) ν2

((
n

j

))
≥ w2(m) + 2 for all remaining j ∈ N(n, k).

Note that this implies the result for this case.

Case m > 1, part (a):

Expand

(
n

la,i

)
to obtain,

(25)

(
2a+i ·m− 2a

2a+i−1 ·m− 2a + ba,i

)
=

(2a+i ·m− 2a) · · · (2a+i−1 ·m− 2a + ba,i + 1)

(2a+i−1 ·m− ba,i) · · · 2 · 1
.

Now expand

(
n

l′a,i

)
to obtain,

(26)(
2a+i ·m− 2a

2a+i−1 ·m− 2a + ba,i + 2a+i−1

)
=

(2a+i ·m− 2a) · · · (2a+i−1 ·m− 2a + ba,i + 2a+i−1 + 1)

(2a+i−1 ·m− ba,i − 2a+i−1) · · · 2 · 1
.
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Consider now the sum of these two binomials and observe that(
n

la,i

)
+

(
n

l′a,i

)
=

(
n

l′a,i

)(
(2a+i−1 ·m− 2a + ba,i + 2a+i−1) · · · (2a+i−1 ·m− 2a + ba,i + 1)

(2a+i−1 ·m− ba,i) · · · (2a+i−1 ·m− ba,i − 2a+i−1 + 1)
+ 1

)
.

The 2-adic valuation of

(
n

l′a,i

)
satisfies the inequality,

ν2

((
2a+im− 2a

2a+i−1m− 2a + ba,i + 2a+i−1

))
= w2(2a+i−1m− 2a + ba,i + 2a+i−1) + w2(2a+i−1 ·m− ba,i − 2a+i−1)− w2(2a+i ·m− 2a)

= w2(2a+i−1m− 2a + ba,i + 2a+i−1) + w2(m− δ1 · 2s−l1 − · · · − δr · 2s−lr − 1)− w2(2i ·m− 1)

≥ w2(2i−1 ·m+ δ1 · 2i−1+(s−l1) + · · ·+ δr · 2i−1+(s−lr) + (2i−1 − 1))

+ (w2(m)− 1)− (w2(m) + i− 1)

≥ w2(m) + i+ w2(m)− 1− w2(m)− i+ 1 = w2(m).

Therefore, the problem is reduced to proving that

(27)
(2a+i−1 ·m− 2a + ba,i + 2a+i−1) · · · (2a+i−1 ·m− 2a + ba,i + 1)

(2a+i−1 ·m− ba,i) · · · (2a+i−1 ·m− ba,i − 2a+i−1 + 1)
≡ 3 mod 4.

This is Lemma 3.3. This concludes the proof of part (a).

Case m > 1, part (b):

In this part we show that

(28) ν2

((
n

k

)
+

(
n

k + 2a+i−1

))
= w2(m) + 1.

Expand the binomial coefficients to obtain

(29)

(
n

k

)
=

(2a+i ·m− 2a) · · · (2a+i−1 ·m− 2a + 1)

(2a+i−1 ·m) · · · 2 · 1

and

(30)

(
n

k + 2a+i−1

)
=

(2a+i ·m− 2a) · · · (2a+i−1 ·m+ 2a+i−1 − 2a + 1)

(2a+i−1 ·m− 2a+i−1) · · · 2 · 1
.

Now consider the sum

(
n

k

)
+

(
n

k + 2a+i−1

)
and factor

(
n

k + 2a+i−1

)
to get the

expression(
n

k + 2a+i−1

)(
(2a+i−1 ·m+ 2a+i−1 − 2a) · · · (2a+i−1 ·m− 2a + 1)

(2a+i−1 ·m) · · · (2a+i−1 ·m− 2a+i−1 + 1)
+ 1

)
.
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Observe that

ν2

((
n

k + 2a+i−1

))
= w2(k + 2a+i−1) + w2(n− k − 2a+i−1)− w2(n)

= w2(2a+i−1 ·m+ 2a+i−1 − 2a) + w2(2a+i−1 ·m− 2a+i−1)− w2(2a+i ·m− 2a)

= w2(2i−1 ·m+ 2i−1 − 1) + w2(m− 1)− w2(2i ·m− 1)

= w2(2i−1 ·m+ (1 + 2 + · · ·+ 2i−2)) + w2(m)− 1− (w2(m) + i− 1)

= w2(m) + i− 1 + w2(m)− 1− w2(m)− i+ 1 = w2(m)− 1

Hence, if

(31)
(2a+i−1 ·m+ 2a+i−1 − 2a) · · · (2a+i−1 ·m− 2a + 1)

(2a+i−1 ·m) · · · (2a+i−1 ·m− 2a+i−1 + 1)
≡ 3 mod 8,

we are done. However, this can be proved using an argument similar to the double
induction of Lemma 3.3. We conclude that

(32) ν2

((
n

k

)
+

(
n

k + 2a+i−1

))
= w2(m) + 1.

This finishes the proof of part (b).

Case m > 1, part (c):

In this part we show that both,

(33) ν2

((
n

k + ba,i + δ

))
and ν2

((
n

k + ba,i + δ + 2a+i−1

))
,

where 0 < δ ≤ 2a − 1, are bigger than or equal to w2(m) + 2.
Start with the first term in (33). Note that its valuation satisfies the inequality,

ν2

((
n

k + ba,i + δ

))
= w2(k + ba,i + δ) + w2(n− k − ba,i − δ)− w2(n)

= w2(2a+i−1 ·m− 2a + ba,i + δ) + w2(2a+i−1 ·m− ba,t − δ)− w2(2a+i ·m− 2a)

≥ w2(m) + i+ w2(m) + 1− (w2(m) + i− 1)

≥ w2(m) + 2.

For the second term, observe that

ν2

((
n

k + ba,i + δ + 2a+i−1

))
= w2(k + ba,i + δ + 2a+i−1) + w2(n− k − ba,i − δ − 2a+i−1)− w2(n)

= w2(2a+i−1 ·m− 2a + ba,i + t+ 2a+i−1) + w2(2a+i−1 ·m− ba,i − δ − 2a+i−1)− w2(2a+i ·m− 2a)

≥ w2(m) + i+ w2(m) + 1− (w2(m) + i− 1)

≥ w2(m) + 2.

This concludes part (c) and, therefore, the case m > 1.

Case m = 1: This case turns out to be rather simple. The reader can check that

(34) ν2

((
n

k

)
+ 1

)
= w2(m) + 1 = 2,
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while

(35) ν2

((
n

j

))
≥ 3

for all other values of j ∈ N(n, k). This concludes the proof of the theorem. �

In terms of the parameters a and i, we have proved the veracity of Cusick-Li-
Stǎnicǎ’s conjecture for all values of the parameters, except for the case i = 1. This

5 10 15 20 25
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10

15

20

25

Figure 5. Let n = 2a(2im− 1) and k = 2a(2i−1m− 1). The red
dots represent pairs (i, a) for which the conjecture is true.

case is different from the case i ≥ 2 in the sense that ν2(σ2a(2m−1),2a(m−1)) is not
of the form w2(m) + c for some constant c.

Example 3.5. Let a = 2, i = 1, and m = 25, then, n = 196 and k = 96.
Note that w2(m) = 3 and ν2(S(σ196,96)) = 10 = w2(m) + 7. However, if a = 2,
i = 1 and m = 41, then n = 324 and k = 160. In this case, w2(41) = 3 and
ν2(S(σ324,160)) = 8 = w2(m) + 5.

We will present a study of this case in section 6.

4. Boundary case for r = 1 and r = 2

In this section we consider the boundary cases of Cusick-Li-Stǎnicǎ’s conjecture
for r = 1 and r = 2. As in the previous section, we explore the veracity of the
conjecture by computing the exact 2-divisibility of S(σn,k).

We only present the study of the case r = 1. Our results can be easily extended
to the case r = 2. We start with the case k = 2a(2i−1m− 1).

Example 4.1. Suppose that a = 2 and i = 2. Then, n = 16m−3 and k = 8m−4.
As m runs through the positive odd numbers, the sequence ν2(S(σ16m−3,8m−4))
obtains the values

4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 5, 6, 6, 7, · · ·

Compare these values with the ones from ν2(S(σ16m−4,8m−4)) in Example 3.4. Note
that each term is one more than the corresponding one in the list of ν2(S(σ16m−4,8m−4)).
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In other words, the sequence appears to be w2(m) + 3. In particular, this seems to
be true for all values of a ≥ 2 and i ≥ 2, i.e. for this particular n and k we have

(36) ν2(S(σn,k)) = ν2(S(σn−1,k)) + 1.

We suspect that this can be proved directly using an argument similar to the
one in Theorem 3.4. We provide a proof for (36) that reduces the case r = 1 to the
case r = 0. However, by doing this, we only prove (36) for a ≥ 3 and i ≥ 3.

Theorem 4.1. Suppose that a, i, and m are positive integers with a ≥ 3, i ≥ 3,
and m odd. Let n = 2a(2im− 1) + 1 and k = 2a(2i−1m− 1). Then,

(37) ν2(S(σn,k)) = w2(m) + 3.

In particular, Cusick-Li-Stǎnicǎ’s conjecture is true for n = 2a+1D + 1 and k =
2a(D − 1) with D ≡ −1 mod 8 and a ≥ 2.

Proof. We use the proof of Theorem 3.4 and the identity

(38) S(σn,k) = S(σn−1,k) + S(σn−1,k + σn−1,k−1),

to prove this theorem. Note that n− 1 = 2a(2im− 1), which is the case r = 0. We
analyze the terms S(σn−1,k) and S(σn−1,k + σn−1,k−1) individually.

We start with S(σn−1,k). We know that

(39) ν2(S(σn−1,k)) = w2(m) + 2,

because

(40) 2
∑

j∈N(n−1,k)

(
n− 1

j

)
= 2w2(m)+2(m1 + 2m2),

with m1 odd. To be specific,

(41) 2

((
n− 1

k

)
+

(
n− 1

k + 2a+i−1

))
= 2w2(m)+2m1,

and the double of the sum of the remainding terms, i.e. all terms of the form(
n− 1

k + ba,i

)
,

(
n− 1

k + ba,i + 2a+i−1

)
, or

(
n− 1

k + ba,i + la,i

)
,

is 2w2(m)+3m2.
Consider now the term S(σn−1,k + σn−1,k−1). Note that

S(σn−1,k + σn−1,k−1) =

n∑
j=0

(−1)(
j
k)+( j

k−1)
(
n− 1

j

)
(42)

=

n∑
j=0

(−1)(
j+1
k )
(
n− 1

j

)

= 2n−1 − 2
∑

j∈N(n−1,k)

(
n− 1

j − 1

)
.

Observe that as j runs through N(n− 1, k),

(
n− 1

j − 1

)
takes the values

(43)

(
n− 1

k

)
,

(
n− 1

k + 2a+i−1

)
,

(
n− 1

k + ba,i

)
,

(
n− 1

k + ba,i + 2a+i−1

)
,
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values of the form

(44)

(
n− 1

k + ba,i + la,i

)
(some of the values, not all)

and the values

(45)

(
n− 1

k − 1

)
,

(
n− 1

k − 1 + 2a+i−1

)
,

(
n− 1

k + ba,i − 1

)
,

(
n− 1

k + ba,i + 2a+i−1 − 1

)
.

The reader can check that if a ≥ 3, then all the terms of (45) have valuation bigger
than or equal to w2(m) + 2. Moreover, all terms of the form (44) have valuation
bigger than or equal to w2(m) + i− 1. Thus, if a ≥ 3 and i ≥ 3, then

(46) 2
∑

j∈N(n−1,k)

(
n− 1

j − 1

)
= 2w2(m)+2(m1 + 2m′2),

where m′2 has the same parity as m2. We conclude that

ν2(S(σn,k)) = ν2

2
∑

j∈N(n−1,k)

(
n− 1

j

)
+ 2

∑
j∈N(n−1,k)

(
n− 1

j − 1

)
= ν2((2w2(m)+2(m1 + 2m2)) + (2w2(m)+2(m1 + 2m′2)))(47)

= ν2(2w2(m)+2(2m1 + 2(m2 +m′2)))

= w2(m) + 3.

This concludes the proof. �

In terms of the parameters a and i, we have proved the veracity of Cusick-Li-
Stǎnicǎ’s conjecture for all values of the parameters in red in Figure 6.

5 10 15 20 25
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Figure 6. Let n = 2a(2im− 1) + 1 and k = 2a(2i−1m− 1). The
red dots represent pairs (i, a) for which the conjecture is true.

We now move to the case k = 2a(2i−1m− 1) + 2a−1. This case is similar to the
previous one in the sense that

(48) ν2(S(σn+1,k)) = ν2(S(σn,k)) + 1,

for values of a ≥ 2. For a = 1 we have

(49) ν2(σn,k) = w2(m) + 2,
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regardless of the value of i. However, the case a = 1 is out of the scope of Cusick-
Li-Stǎnicǎ’s conjecture.

Theorem 4.2. Suppose that a, i, and m are positive integers with a ≥ 2 and m
odd. Let n = 2a(2im− 1) + 1 and k = 2a(2i−1m− 1) + 2a−1. Then,

(50) ν2(S(σn,k)) = w2(m) + i+ 1.

If a = 1, then

(51) ν2(σn,k) = w2(m) + 2.

In particular, Cusick-Li-Stǎnicǎ’s conjecture is true for n = 2a+1D + 1 and k =
2aD.

Proof. When a ≥ 3, the proof is very similar to the one Theorem 4.1. The case
a = 2 follows by a direct calculation, similar to the one presented in Theorem 3.2.
The proof of the case a = 1 is very similar to the one presented in Theorem 3.4. �

We now consider the case when r = 2, i.e. when n has the form n = 2a(2im −
1) + 2. It turns out that this case can also be transformed to the case r = 0 via the
identity

S(σn+2,k) = S(σn,k) + 2S(σn,k + σn,k−1) + S(σn,k + 2σn,k−1 + σn,k−2)

= S(σn,k) + 2S(σn,k + σn,k−1) + S(σn,k + σn,k−2).(52)

For k = 2a(2i−1m− 1) we have the following theorem.

Theorem 4.3. Suppose that a, i, and m are positive integers with a ≥ 4, i ≥ 4,
and m odd. Let n = 2a(2im− 1) + 2 and k = 2a(2i−1m− 1). Then,

(53) ν2(S(σn,k)) = w2(m) + 4.

In particular, Cusick-Li-Stǎnicǎ’s conjecture is true for n = 2a+1D + 1 and k =
2a(D − 1) with D ≡ −1 mod 16 and a ≥ 3.

5 10 15 20 25
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Figure 7. Let n = 2a(2im− 1) + 2 and k = 2a(2i−1m− 1). The
red dots represent pairs (i, a) for which the conjecture is true.

Recall that for k = 2a(2i−1m− 1), by transforming the case r = 1 to r = 0, we
obtained Theorem 4.1, which is true for a ≥ 3 and i ≥ 3. Now, by transforming
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the case r = 2 to r = 0, we obtained Theorem 4.3, which holds for a ≥ 4 and i ≥ 4.
In other words, we needed to add 1 to each parameter.

Next is the case r = 2 for k = 2a(2i−1m− 1) + 2a−1.

Theorem 4.4. Suppose that a, i, and m are positive integers with a ≥ 3 and m
odd. Let n = 2a(2im− 1) + 2 and k = 2a(2i−1m− 1) + 2a−1. Then,

(54) ν2(S(σn,k)) = w2(m) + i+ 2.

If a = 2, then

(55) ν2(S(σn,k)) = w2(m) + 2,

regardless of the value of i. In particular, Cusick-Li-Stǎnicǎ’s conjecture is true for
n = 2a+1D + 2 and k = 2aD.

Proof. For a ≥ 3, the proof uses the same techniques as in Theorem 4.1. For a = 2,
the proof is very similar to the one presented in Theorem 3.4. �

Observe that Theorems 3.2, 4.2, and 4.4 prove the boundary cases of Cusick-Li-
Stǎnicǎ’s conjecture for n = 2a+1D + r and k = 2aD where r = 0, 1, 2.

5. The case r = −1

The only boundary case of Cusick-Li-Stǎnicǎ’s conjecture that we have not con-
sidered is the one when

n = 2a(2im− 1)− 1 and k = 2a(2i−1m− 1).

This case seems to behave similar to the cases when n = 2a(2im − 1) + r, for r =
0, 1, 2, in the sense that the 2-divisibility of S(σn,k) depends on w2(m). However, we
point out this case is also quite different because now ν2(S(σn,k)) seems to depend
on both parameters a and i. To be specific, we conjecture that for a ≥ 4 and i ≥ 2
we have

(56) ν2(S(σn,k)) = w2(m) + i+ 3a− 3.

Experiments suggest that this exact divisibility is obtained at

(57) ν2

k+2a−1∑
j=k

(
n

j

) = w2(m) + i+ 3a− 4,

while if A = N(n, k) \ {k, k + 1, · · · , k + 2a − 1}, then it appears that

(58) ν2

∑
j∈A

(
n

j

) > w2(m) + i+ 3a− 4.

Proving (56) might need an approach different than the ones present in this
manuscript. First, the identity

(59) S(σn,k) = S(σn−1,k) + S(σn−1,k + σn−1,k−1),

which was used in the proof of Theorem 4.1 to reduce the case r = 1 to the case
r = 0, does not work directly because the terms

(60) S(σn,k) and S(σn−1,k + σn−1,k−1)
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have the same 2-adic valuation. Second, if we try to prove (57) directly, then we
encounter the difficulty that each binomial coefficient in the sum has the same
2-adic valuation, i.e.

(61) ν2

((
n

j

))
= w2(m) + i− 2.

In other words, we need to know the total contribution of them, but we cannot
directly use the ultrametric property of the valuation to get such contribution. On
the other hand, in (58) we can divide the binomial coefficients in the sum into
blocks of length 2a. All the binomial coefficients in a specific block have the same
valuation. However, different blocks might have different valuation. Again, we
cannot directly apply the ultrametric property to show (58).

We were able to prove (56) for a = 4 and a = 5. However, we omit the proof
because it follows along the same line of the proofs of our previous results.

Proposition 5.1. Suppose that a, i, and m are positive integers with a ∈ {4, 5},
i ≥ 2, and m odd. Let n = 2a(2im− 1)− 1 and k = 2a(2i−1m− 1). Then,

(62) ν2(S(σn,k)) = w2(m) + i+ 3a− 3.

In particular, Cusick-Li-Stǎnicǎ’s conjecture is true for n = 2a+1D − 1 and k =
2a(D − 1).

For fixed a ≥ 4, any m, and any i ≥ 2a, we have a process that allows us
to determine the veracity of (57) and (58). However, this process depends on a
computation and therefore, we do not have the proof in general.

6. The case k = 2a(m− 1)

In this section we go back to the boundary case

(63) n = 2a(2im− 1) and k = 2a(2i−1m− 1)

and explore the behaviour of ν2(S(σn,k)) when i = 1. Observe that this is the only
case not covered by Theorem 3.4.

Recall that Theorem 3.4 tells us that

(64) ν2(S(σn,k)) = w2(m) + 2,

as long as i ≥ 2. On the other hand, Example 3.5 shows that (64) does not hold
for i = 1. We attempt to find some patterns in the 2-divisibility of the exponential
sum of σn,k when i = 1. Most of the statements presented in this section have not
been proved yet. In other words, this section is completely experimental.

We start the study by reviewing what already have. Remember that the factor
2im − 1 in n represents D in Cusick-Li-Stǎnicǎ’s conjecture. We know that D is
odd, thus re-write D = 2j0 − 1 with j0 ≥ 2. If we write everything in terms of the
new parameter j0, then we have

(65) n = 2a(2j0 − 1) and k = 2a(j0 − 1).

Observe that knowing (64) is equivalent to knowing ν2(S(σn,k)) when j0 even.
Thus, the case when j0 is odd is open.

Divide the natural numbers into two classes:

j0 = 2j1 (even)

j0 = 2j1 + 1 (odd) .
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We call this the first level (it will become clear what we mean by this). As mentioned
in the previous discussion, we know the 2-adic valuation of the even class, i.e.
w2(2j1) + 2, but not the one for the odd class. Split the odd class into the two
classes:

(1) 4j2 + 1,
(2) 4j2 + 3, for j2 non-negative integer.

We call this the second level. Consider the class 4j2 + 3. In this case, n = 2a(20 +
32j2) and k = 2a(8 + 16j2). It appears that as long as a > 1, then as j2 runs
through the non-negative integers, the sequence ν2(S(σn,k)) is given by

5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 8, 7, 8, 8, 9, 6, 7, 7, 8, · · ·

This appears to be the sequence w2(4j2 + 3) + 3. The class 4j2 + 1 does not have
this behavior. Thus, as we did before, we split this class, i.e. the class 4j2 + 1, into
two classes:

(1) 8j3 + 1,
(2) 8j3 + 5, for j3 non-negative integer.

We call this the third level. Consider the class 8j3 + 5. Again, it appears that if
a > 1, then the sequence ν2(S(σn,k)) is given by

5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 8, 7, 8, 8, 9, 6, 7, 7, 8, · · ·

Again, this seems to be the sequence w2(8j2 + 5) + 3. The node 8j3 + 1 does not
have this form. Hence, we split it into two classes:

(1) 16j4 + 1,
(2) 16j4 + 9, for j4 non-negative integer.

This is the fourth level. As before, consider the class 16j4 + 9. If a > 2, then the
sequence ν2(S(σn,k)) is given by

6, 7, 7, 8, 7, 8, 8, 9, 7, 8, 8, 9, 8, 9, 9, 10, 7, 8, 8, 9, · · ·

This sequence seems to be w2(16j4 + 9) + 4. Observe that now we need a > 2. The
class 16j4 + 1 does not behave in this way. Continue branching as before.

It appears that, after the third level, the level l is given by the classes

(1) 2ljl + 1,
(2) 2ljl + 2l−1 + 1, for jl non-negative integer.

Moreover, the valuation to be assigned to the class 2ljl+2l−1 +1 is w2(2ljl+2l−1 +
1) + l and this seems to work for a > blog2(l)c. This information is summarized in
a tree, see Figure 8.

The above discussion leads us to believe that as long as a > blog2(l)c, the
information at the l-level is predictable (we are not claiming we can prove it).
However, what happens when a ≤ blog2(l)c? It appears that if l is not a power of
2 and if a ≤ blog2(l)c, then

(66) ν2(S(σn,k)) = w2(2ljl + 2l−1 + 1) + 2a.

In the case that l is a power of 2 and a < blog2(l)c, then it seems that

(67) ν2(S(σn,k)) = w2(2ljl + 2l−1 + 1) + 2a.

We do not recognize the behavior of the 2-adic valuation for l a power of 2 and
a = blog2(l)c.
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Figure 8. The tree for the case i = 1.

If we replace n by n + r for r = 1, 2 and consider the same k, then it appears
that similar behavior occurs for the case when i = 1.
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