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Abstract. This work presents a study of perturbations of symmetric Boolean functions. In particular, it

establishes a connection between exponential sums of these perturbations and Diophantine equations of the

form
n∑

l=0

(n
l

)
xl = 0,

where xj belongs to some fixed bounded subset Γ of Z. The concepts of trivially balanced symmetric

Boolean function and sporadic balanced Boolean function are extended to this type of perturbations. An

observation made by Canteaut and Videau [4] for symmetric Boolean functions of fixed degree is extended.
To be specific, it is proved that, excluding the trivial cases, balanced perturbations of fixed degree do not

exist when the number of variables grows. Some sporadic balanced perturbations are presented. Finally, a
beautiful but unexpected identity between perturbations of two very different symmetric Boolean functions

is also included in this work.

1. Introduction

The theory of Boolean functions is a beautiful area of combinatorics with vast applications to many areas
of mathematics as well as outside the discipline. Examples include electrical engineering, the theory of
error-correcting codes and cryptography. In the modern era, efficient implementations of Boolean functions
with many variables is a challenging problem due to memory restrictions of current technology. Because of
this, symmetric Boolean functions are good candidates for efficient implementations. However, symmetry is
a too special property and may imply that these implementations are vulnerable to attacks. For this reason,
we study perturbations of symmetric Boolean functions. These perturbations, which are the focus of [7],
are not longer symmetric. Nevertheless, the symmetry of the underlying function can be exploited in order
to make fast calculations, to obtain recurrences, and, as it was done in [7], to obtain information about the
asymptotic behavior.

In plenty of applications, especially the ones related to cryptography, it is important for Boolean functions
to be balanced. A balanced Boolean function is one for which the number of zeros and the number of ones
are equal in its truth table. Balancedness of Boolean functions can be studied from the point of view of
exponential sums, as it is done is this article. This point of view is in fact a very active area of research. For
some examples, please refer to [1, 2, 5–8, 15, 18–20, 22].

The study of balancedness of symmetric Boolean functions is connected to the problem of bisecting
binomial coefficients. A solution (δ0, δ1, · · · , δn) to the equation

(1.1)

n∑
l=0

xl

(
n

l

)
= 0, xl ∈ {−1, 1},

is said to give a bisection of the binomial coefficients
(
n
l

)
, 0 ≤ l ≤ n. The first detailed study of this connection

was made by Mitchell [17]. Other studies include Jefferies [14] and Sarkar and Maitra [21]. In this work,
balancedness of the perturbations considered is linked to equation (1.1), where the xl’s now lie in a bounded
subset Γ of Z instead of in {−1, 1}. The concept of trivially balanced symmetric Boolean function and the
concept of sporadic balanced symmetric Boolean function (which was introduced in [14]), are extended to
these perturbations.
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A conjecture similar to the one presented in [10] for elementary symmetric Boolean functions seems to be
true for the simplest type of the perturbations considered in this study. Also, similar to the case of symmetric
Boolean functions, computations suggest that most balanced perturbations are trivially balanced. This led
us to study trivially balanced perturbations in more detail: we showed that once a perturbation of fixed
degree is trivially balanced at one point, then it is trivially balanced at infinitely many points. In [4],
Canteaut and Videau observed that, excluding the trivial cases, balanced symmetric Boolean functions of
fixed degree do not exist when the number of variables grows (this was recently proved in [12]). This result is
extended to our perturbations, that is, it is proved that, excluding the trivial cases, balanced perturbations
of fixed degree do not exist when the number of variables grows. Therefore, the search for sporadic balanced
perturbations is of interest. It is in this search that an striking identity between the perturbations of two
different symmetric Boolean functions is used. In particular, this identity allow us to obtained two sporadic
balanced perturbations for “the price of one”.

This article is divided as follows. The next section includes some preliminaries that are needed for the work
presented in this manuscript. In section 3, a beautiful but unexpected identity between the perturbations of
two very different symmetric Boolean functions is proved. This identity is later used in section 6 when the
search of sporadic perturbations is considered. In section 4, the study of the link between perturbations and
equation (1.1) over bounded sets of integers is considered. Some of the known results about balancedness
of symmetric Boolean functions and bisections of binomial coefficients are extended. Section 5 presents a
study of balanced perturbations as the number of variables grows. It is in this section where the observation
of Canteaut and Videau is extended. Finally, as mentioned before, some examples of sporadic perturbations
are presented in section 6.

2. Preliminaries

Let F2 be the binary field, Fn2 = {(x1, . . . , xn)|xi ∈ F2, i = 1, ..., n}, and F (X) = F (X1, . . . , Xn) be a
polynomial in n variables over F2. The exponential sum associated to F over F2 is

(2.1) S(F ) =
∑

x1,...,xn∈F2

(−1)F (x1,...,xn).

A Boolean function F is called balanced if S(F ) = 0, i.e. the number of zeros and the number of ones are
equal in the truth table of F . This property is important for some applications in cryptography.

Any symmetric Boolean function is a linear combination of elementary symmetric polynomials. Let σn,k
be the elementary symmetric polynomial in n variables of degree k. For example,

(2.2) σ4,3 = X1X2X3 +X1X4X3 +X2X4X3 +X1X2X4.

Every symmetric Boolean function can be identified with an expression of the form

(2.3) σn,k1 + σn,k2 + · · ·+ σn,ks ,

where 1 ≤ k1 < k2 < · · · < ks are integers. For the sake of simplicity, the notation σn,[k1,··· ,ks] is used to
denote (2.3). For example,

σ3,[2,1] = σ3,2 + σ3,1(2.4)

= X1X2 +X3X2 +X1X3 +X1 +X2 +X3.

It is not hard to show that if 1 ≤ k1 < k2 < · · · < ks are fixed integers, then

(2.5) S(σn,[k1,k2,··· ,ks]) =

n∑
l=0

(−1)(
l

k1
)+( l

k2
)+···+( l

ks
)
(
n

l

)
.

Remark 2.1. Observe that the right hand side of (2.5) makes sense for n ≥ 1, while the left hand side exists
for n ≥ ks. Throughout the rest of the article, S(σn,[k1,k2,··· ,ks]) should be interpreted as the expression on
the right hand side, so it makes sense to talk about “exponential sums” of symmetric Boolean functions with
less variables than their degrees.

In [6], Castro and Medina used (2.5) to study exponential sums of symmetric polynomials from the point
of view of integer sequences. As part of their study, they showed that the sequence {S(σn,[k1,··· ,ks])}n∈N
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satisfies the homogeneous linear recurrence

(2.6) xn =

2r−1∑
l=1

(−1)l−1

(
2r

l

)
xn−l,

where r = blog2(ks)c+ 1 (this result also follows from [3, Th. 3.1, p. 248]) and used this result to compute
the asymptotic behavior S(σn,[k1,··· ,ks]) as n→∞. To be specific,

(2.7) lim
n→∞

1

2n
S(σn,[k1,··· ,ks]) = c0(k1, · · · , ks)

where

(2.8) c0(k1, · · · , ks) =
1

2r

2r−1∑
l=0

(−1)(
l

k1
)+···+( l

ks
).

They used this concept to show that a conjecture of Cusick, Li and Stǎnicǎ is true asymptotically (this result
was recently re-established in [12]). See [6] for more details.

In the case of the elementary symmetric polynomial, the same authors were able to improve (2.6) and
reduced the degree of the homogeneous linear recurrence with integer coefficients that its exponential sums
satisfy. They did this by finding the minimal homogeneous linear recurrence with integer coefficients that
{S(σn,k)} satisfies. To be specific, let ε(n) be defined as

(2.9) ε(n) =

{
0, if n is a power of 2,
1, otherwise.

Then, the following result holds (see [6]).

Theorem 2.2. Let k be a natural number and pk(X) be the characteristic polynomial associated to the
minimal linear recurrence with integer coefficients that {S(σn,k)}n∈N satisfies. Let k̄ = 2bk/2c+ 1. Express
k̄ as its 2-adic expansion

(2.10) k̄ = 1 + 2a1 + 2a2 + · · ·+ 2as ,

where the last exponent is given by as = blog2(k̄)c. Then,

(2.11) pk(X) = (X − 2)ε(k)
s∏
l=1

Φ2al+1(X − 1).

In particular, the degree of the minimal linear recurrence that {S(σn,k)}n∈N satisfies is equal to 2bk/2c+ε(k).

In this article, perturbations of symmetric Boolean functions and their connection to solutions of (1.1)
over some bounded set of integers are considered. Recall that σn,k is the elementary symmetric polynomial
of degree k in the variables X1, · · · , Xn. Suppose that j < n and let F (X) be a binary polynomial in
the variables X1, · · · , Xj (the first j variables in X1, · · · , Xn). We are interested in exponential sums of
polynomials of the form

(2.12) σn,[k1,··· ,ks] + F (X),

where 1 ≤ k1 < · · · < ks. Observe that perturbations of the form (2.12) are not necessarily symmetric.
In [7], Castro and Medina showed that exponential sums of perturbations of the form (2.12) are related

to exponential sums of symmetric Boolean functions via the following equation

(2.13) S(σn,[k1,··· ,ks] + F (X)) =

j∑
m=0

Cm(F )S

(
m∑
i=0

(
m

i

)
(σn−j,[k1−i,··· ,ks−i])

)
,

where

(2.14) Cm(F ) =
∑

x∈F2 with w2(x)=m

(−1)F (x),

and w2(x) represents the Hamming weight of x, i.e. the number of entries of x that are one.
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Remark 2.3. There are three things to observe about equation (2.13). First, it is clear that the value
of
(
m
i

)
that is inside the exponential sum can be taken mod 2, since only the parity matters. Second, if

kl − i < 0, then the term σn−j,kl−i does not exist and so it is not present in the equation. Finally, in the
case that kl − i = 0, the elementary polynomial σn−j,0 should be interpreted as 1.

Equation (2.13) now implies that exponential sums of these type of perturbations also satisfy recurrence
(2.6). This is used in the next section when an identity between perturbations of two different symmetric
Boolean polynomials is established. It also serves as the link to equation (1.1) over a bounded set of integers.

3. Some perturbations identities

In this section we establish a very beautiful identity between perturbations of two different symmetric
Boolean polynomials. We start our discussion with a particular example. The idea for doing this is to get
an insight of what is behind this identity. A proof for the general case will be provided later in this section
once our intuition is solidified.

Consider the two polynomials σn,4 and σn,5 and their corresponding exponential sums:

(3.1) S(σn,4) =

n∑
l=0

(−1)(
l
4)
(
n

l

)
and S(σn,5) =

n∑
l=0

(−1)(
l
5)
(
n

l

)
.

These sums seem similar, but they have very different behaviors. For example, consider the expressions

(3.2) (−1)(
l
4) and (−1)(

l
5),

which are the coefficients of the binomial numbers in the sums (3.1). As l ranges through the non-negative
integers, both expressions in (3.2) are periodic with period length 8. In fact, their periods are given by

l 0 1 2 3 4 5 6 7

(−1)(
l
4) 1 1 1 1 −1 −1 −1 −1

(−1)(
l
5) 1 1 1 1 1 −1 1 −1

Observe that these periods differ in only two positions, but this difference has a big effect on the behavior of
S(σn,4) and S(σn,5). For instance, S(σn,4) = 0, i.e. σn,4 is balanced, whenever n ≡ 7 mod 8. In contrast,
the exponential sum S(σn,5) is never zero. Also, the exponential sum S(σn,4) assumes negative values for
some values of n, but S(σn,5) is always positive. These claims are evident from the first few values of both
sequences:

n 1 2 3 4 5 6 7 8 9 10
S(σn,4) 2 4 8 14 20 20 0 −68 −232 −560
S(σn,5) 2 4 8 16 30 52 84 128 188 280

Thus, it is clear that the sequences {S(σn,4)} and {S(σn,5)} have very different behavior. However, both
of them can be altered to make them, not just similar, but equal (up to a shift)! The trick, in fact, is very
simple: just add the linear polynomial X1 to both symmetric polynomials, σn,4 and σn,5, to get

(3.3) S(σn,4 +X1) = S(σn+1,5 +X1).

For example,

n 2 3 4 5 6 7 8 9 10
S(σn,4 +X1) 0 0 2 8 20 40 68 96 96
S(σn,5 +X1) 0 0 0 2 8 20 40 68 96

This trick not only works for σn,4 and σn,5, but also for σn,2k and σn,2k+1 with k a positive integer. Explicitly,

(3.4) S(σn,2k +X1) = S(σn+1,2k+1 +X1).

We now begin our proof of identity (3.4). The bulk of the proof relies on the fact that sequences of the
form {S(σn,k)} and {S(σn,k+F (X))} satisfy linear recurrences with integer coefficients. To be more specific,
the idea to establish identity (3.4) is to show that both sequences satisfy the same recurrence. Once this is
done, then to show that identity (3.4) holds, it is enough to show that both sequences have the same initial
conditions. We start our argument with the following result.
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Lemma 3.1. Let k > 1 and m ≥ 1 be fixed integers. Consider the sequence

(3.5)

S
 m∑
j=0

(
m

j

)
σn,k−j

 .

Then, sequence (3.5) satisfies the same homogeneous linear recurrence as {S(σn,k)}.

Proof. The proof is by induction on m. Start with the identity

(3.6) S(σn,k) = S(σn−1,k) + S(σn−1,k + σn−1,k−1).

This implies that

(3.7) S(σn,k + σn,k−1) = S(σn+1,k)− S(σn,k),

and so it is clear that {S(σn,k + σn,k−1)} satisfies the same recurrence as {S(σn,k)}. Thus, the claim holds
for m = 1.

Suppose now that the statement is true for all values of m1 less than some m > 1. The identity

S(σn,k) =

m∑
l=0

(
m

l

)
S

(
l∑
i=0

(
l

i

)
σn−m,k−i

)
(3.8)

=

m−1∑
l=0

(
m

l

)
S

(
l∑
i=0

(
l

i

)
σn−m,k−i

)
+ S

(
m∑
i=0

(
m

i

)
σn−m,k−i

)
,

implies

(3.9) S

(
m∑
i=0

(
m

i

)
σn,k−i

)
= S(σn+m,k)−

m−1∑
l=0

(
m

i

)
S

(
l∑
i=0

(
l

i

)
σn,k−i

)
.

By induction, each term of the sum on the right hand side of (3.9) satisfies the same recurrence as {S(σn,k)},
therefore the claim is also true for m. This concludes the proof. �

The next step is to show that the sequences {S(σn,k)} and {S(σn,k + F (X))} satisfy the same linear
recurrence with integer coefficients.

Theorem 3.2. Let k > 1 and j be fixed integers and let F (X) be a binary polynomial in the variables
X1, · · · , Xj. Suppose that k̄ = 2as + · · ·+ 2a1 + 1. The sequence

(3.10) {S(σn,k + F (X))}n∈N
satisfies the homogeneous linear recurrence whose characteristic polynomial is

(3.11) f(X) = (X − 2)ε(k)
s∏
l=1

Φ2al+1(X − 1).

Moreover, if F (X) is balanced then (3.10) satisfies the homogeneous linear recurrence with characteristic
polynomial

(3.12)

s∏
l=1

Φ2al+1(X − 1),

which is of degree k̄ − 1 = 2as + · · ·+ 2a1 .

Proof. Recall that

(3.13) S(σn,k + F (X)) =

j∑
m=0

Cm(F )S

(
m∑
i=0

(
m

i

)
σn−j,k−i

)
,

where

(3.14) Cm(F ) =
∑

x∈Fj
2 with w2(x)=m

(−1)F (x),
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and w2(x) is the Hamming weight of x. Thus, the first claim is a direct consequence of Lemma 3.1. For the
second claim, the fact that f(X) is the characteristic polynomial implies that

(3.15) S(σn,k + F (X)) = d0 · 2n +
∑

λ6=2,f(λ)=0

dλ · λn

for some constants d0 and dλ’s. In [7], Castro and Medina showed that

(3.16) d0 = c0(k) · S(F )

2j
,

where c0(k) is defined by (2.8). The result follows. �

The above results are sufficient to show that for k ≥ 1 an integer,

(3.17) S(σn,2k +X1) = S(σn+1,2k+1 +X1)

for every positive integer n. Observe that since F (X) = X1 is a balanced polynomial, then Theorem 3.2
implies that the sequences {S(σn,2k + X1)} and {S(σn+1,2k+1 + X1)} satisfy the same linear recurrence of
order 2k. Therefore, to show that both sequences are equal, it is sufficient to show that their first 2k values
coincide.

Let

f(n, k) = S(σn,2k +X1)

= S(σn−1,2k)− S(σn−1,2k + σn−1,2k−1)

=

n−1∑
j=0

(−1)(
j
2k)
(

1− (−1)(
j

2k−1)
)(n− 1

j

)
and

g(n, k) = S(σn+1,2k+1 +X1)

= S(σn,2k+1)− S(σn,2k+1 + σn,2k)

=

n∑
j=0

(−1)(
j

2k+1)
(

1− (−1)(
j
2k)
)(n

j

)
.

Note that

f(1, k) = 0 = g(1, k),

f(2, k) = 0 = g(2, k),

...

f(2k − 1, k) = 0 = g(2k − 1, k),

f(2k, k) = 2 = g(2k, k).

In other words, {f(n, k)}∞n=1 and {g(n, k)}∞n=1 satisfy the same recurrence of order 2k with the same initial
conditions. Therefore,

f(n, k) = g(n, k),

S(σn,2k +X1) = S(σn+1,2k+1 +X1)

for every n and k. This discussion also implies the following identity of binomial sums.

Corollary 3.3. Let k and n be positive integers. Then,

n∑
l=0

(−1)(
l

2k+1)
(

1− (−1)(
l
2k)
)(n

l

)
=

n−1∑
l=0

(−1)(
l
2k)
(

1− (−1)(
l

2k−1)
)(n− 1

l

)
.

Therefore, even though {S(σn,2k)} and {S(σn,2k+1)} are different sequences, they can be altered in such
a way to produce an equality (up to a shift in the number of variables), i.e.

(3.18) S(σn,2k +X1) = S(σn+1,2k+1 +X1).
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Equation (3.18) leads to the following question: For which Boolean polynomials F (X) in j variables (j fixed)
does the identity

(3.19) S(σn,2k + F (X)) = S(σn+1,2k+1 + F (X))

hold? Remarkably, the answer is for all balanced polynomials F (X).
We prove this claim next. However, its proof depends on the following classical result.

Lemma 3.4 (Lucas’ Theorem). Let n be a natural number with 2-adic expansion n = 2a1 + 2a2 + · · ·+ 2al .
The binomial coefficient

(
n
k

)
is odd if and only if k is either 0 or a sum of some of the 2ai ’s

Theorem 3.5. Suppose that k ≥ 1 is an integer. Consider a Boolean polynomial F (X) in j (fixed) variables.
Then,

S(σn+j,2k + F (X)) = S(σn+1+j,2k+1 + F (X))

for every positive integer n if and only if F (X) is balanced.

Proof. The necessary part of the statement is not hard to establish. To see this, suppose that F (X) is not
balanced. Recall that

S(σn+j,2k + F (X)) =

j∑
m=0

Cm(F )S

(
m∑
i=0

(
m

i

)
σn,2k−i

)
(3.20)

=

n∑
l=0

(
j∑

m=0

Cm(F )(−1)
∑m

i=0 (m
i )( l

2k−i)

)(
n

l

)
.

S(σn+1+j,2k+1 + F (X)) =

j∑
m=0

Cm(F )S

(
m∑
i=0

(
m

i

)
σn+1,2k+1−i

)

=

n+1∑
l=0

(
j∑

m=0

Cm(F )(−1)
∑m

i=0 (m
i )( l

2k−i)

)(
n+ 1

l

)
.

Theorem 3.2 implies that {S(σn+j,2k + F (X))} and {S(σn+1+j,2k+1 + F (X))} satisfy the same linear recur-
rence of order 2k+ 1. It is not hard to see that the first initial condition of {S(σn,2k +F (X))} is S(F ), while
the first initial condition of {S(σn+1,2k+1 + F (X))} is 2S(F ). Since S(F ) 6= 0, then {S(σn+j,2k + F (X))}
and {S(σn+1+j,2k+1 + F (X))} are different sequences.

The sufficient part can also be argued from the point of view of recurrences, but the proof becomes
cumbersome as soon as j ≥ 5. Therefore, we must find an alternative proof. Suppose that F (X) is balanced.
For simplicity, let Cm = Cm(F ) and remember that S(F ) = C0 +C1 + · · ·+Cj . The balancedness of F (X)
implies that

(3.21) C0 + C1 + · · ·+ Cj = 0.

We now simplify the formulas in (3.20). For this, iterate the recursive formula

(3.22)

(
n

l

)
=

(
n− 1

l

)
+

(
n− 1

l − 1

)
to obtain the identity

(3.23)

m∑
i=0

(
m

i

)(
l

k − i

)
=

(
l +m

k

)
.

Thus,

S(σn+j,2k + F (X)) =

n∑
l=0

(
j∑

m=0

Cm(−1)(
l+m
2k )

)(
n

l

)
,(3.24)

S(σn+1+j,2k+1 + F (X)) =

n∑
l=0

(
j∑

m=0

Cm(−1)(
l+1+m
2k+1 )

)(
n+ 1

l

)
.
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Observe that S(σn+1+j,2k+1 + F (X)) can be re-written as

S(σn+1+j,2k+1 + F (X)) =

n∑
l=0

(
j∑

m=0

Cm(−1)(
l+m
2k+1)

)[(
n

l

)
+

(
n

l − 1

)]

=

n∑
l=0

(
j∑

m=0

Cm

[
(−1)(

l+m
2k+1) + (−1)(

l+1+m
2k+1 )

])(n
l

)
.

The next step is to use the assumption of balancedness of F (X). Since

(3.25) C0 = −C1 − C2 − · · · − Cj ,

then

S(σn+j,2k + F (X)) =

j∑
m=0

Cm

n∑
l=0

(−1)(
l+m
2k )
(
n

l

)
(3.26)

=

j∑
m=1

Cm

n∑
l=0

[
(−1)(

l+m
2k ) − (−1)(

l
2k)
](n

l

)

and

S(σn+1+j,2k+1 + F (X)) =

j∑
m=0

Cm

n∑
l=0

[
(−1)(

l+m
2k+1) + (−1)(

l+1+m
2k+1 )

](n
l

)

=

j∑
m=1

Cm

n∑
l=0

[
(−1)(

l+m
2k+1) + (−1)(

l+1+m
2k+1 ) − (−1)(

l
2k+1) − (−1)(

l+1
2k+1)

](n
l

)
.(3.27)

One consequence of Lucas’ Theorem is

(3.28) (−1)(
l+m
2k ) − (−1)(

l
2k) = (−1)(

l+m
2k+1) + (−1)(

l+1+m
2k+1 ) − (−1)(

l
2k+1) − (−1)(

l+1
2k+1)

for all positive integers k and all non negative integers l and m. This concludes the proof. �

Example 3.6. Consider the rotation

R(X) = X1X2 +X2X3 +X3X4 +X4X5 +X5X1.

Observe that R(X) is balanced. Theorem 3.5 implies that S(σn,2k+R(X)) = S(σn+1,2k+1 +R(X)) for every
positive integer n and k. Indeed, let 2k = 10, then the first few values of the sequence {S(σn,10 + R(X))}
(starting from n = 10) are

2, 24, 136, 528, 1612, 4144, 9336, 18928, 35220, 61104, 100064, · · ·

while the first few values of {S(σn,11 +R(X))} (starting from n = 10) are

0, 2, 24, 136, 528, 1612, 4144, 9336, 18928, 35220, 61104, · · · .

Example 3.7. Consider the Boolean polynomial

F (X) = X1X5 +X4X5 +X9X5 +X12X5 +X3X6 +X2X7 +X1X8 +X1X9

+X4X9 +X8X9 +X3X10 +X7X10 +X2X11 +X6X11 +X1X12.

Theorem 3.2 implies that the sequences {S(σn,2 + F (X))} and {S(σn+1,3 + F (X))} satisfy the same linear
recurrence of order 3. Now observe that

S(σ13,2 + F (X)) = S(σ14,3 + F (X)) = 0(3.29)

S(σ14,2 + F (X)) = S(σ15,3 + F (X)) = −256

S(σ15,2 + F (X)) = S(σ16,3 + F (X)) = −512.

Thus, {S(σn,2 + F (X))} = {S(σn+1,3 + F (X))} holds for every n. In view of Theorem 3.5, it must be that
F (X) is balanced. Indeed, S(F ) = 0.
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It is often the case in mathematics that results can be generalized by closer inspection of their proofs.
This is the case for Theorem 3.5. A crucial element of its proof is the identity

(3.30) (−1)(
l+m
2k ) − (−1)(

l
2k) = (−1)(

l+m
2k+1) + (−1)(

l+1+m
2k+1 ) − (−1)(

l
2k+1) − (−1)(

l+1
2k+1),

which is true for all positive integers k and all non negative integers l and m. Now, iteration of (3.22) leads
to the equation

(3.31)

(
l +m

2k

)
=

t∑
i=0

(
t

i

)(
l +m− t

2k − i

)
and other similar ones for(

l

2k

)
,

(
l +m

2k + 1

)
,

(
l +m+ 1

2k + 1

)
,

(
l

2k + 1

)
, and

(
l + 1

2k + 1

)
.

This and equation (3.30) (shifted by t) imply that

(−1)
∑t

i=0 (t
i)(

l+m
2k−i) − (−1)

∑t
i=0 (t

i)(
l

2k−i) = (−1)
∑t

i=0 (t
i)(

l+m
2k+1−i) + (−1)

∑t
i=0 (t

i)(
l+m+1
2k+1−i)

−(−1)
∑t

i=0 (t
i)(

l
2k+1−i) − (−1)

∑t
i=0 (t

i)(
l+1

2k+1−i)(3.32)

is true for all positive integers k and all non negative integers l and m.
Suppose that F (X) is a balanced Boolean polynomial in the variables X1, · · · , Xj with j fixed. Following

the proof of Theorem 3.5 and using equation (3.32) lead to the equation

(3.33) S

([
t∑
i=0

(
t

i

)
σn+j,2k−i

]
+ F (X)

)
= S

([
t∑
i=0

(
t

i

)
σn+1+j,2k+1−i

]
+ F (X)

)
,

which is true for all positive integers k and all non-negative integers t. This leads to the following result.

Theorem 3.8. Suppose that k and t are integers with k positive and t non-negative. Consider a Boolean
polynomial F (X) in j (fixed) variables. Then,

S

([
t∑
i=0

(
t

i

)
σn+j,2k−i

]
+ F (X)

)
= S

([
t∑
i=0

(
t

i

)
σn+1+j,2k+1−i

]
+ F (X)

)
for every positive integer n if and only if F (X) is balanced.

Proof. Lemma 3.1 and Theorem 3.2 can be easily extended to perturbations of the form σn,[k1,··· ,ks] +F (X).
Once this is done, the necessary part of the statement follows as in Theorem 3.5. The sufficient part follows
from the discussion above. �

Example 3.9. Suppose that F (X) is a balanced Boolean polynomial in the variables X1, · · · , Xj with j
fixed. Theorem 3.8 implies that the following equations

S(σn+j,6 + F (X)) = S(σn+j+1,7 + F (X))

S(σn+j,[6,5] + F (X)) = S(σn+j+1,[7,6] + F (X))

S(σn+j,[6,4] + F (X)) = S(σn+j+1,[7,5] + F (X))

S(σn+j,[6,5,4,3] + F (X)) = S(σn+j+1,[7,6,5,4] + F (X))

S(σn+j,[6,2] + F (X)) = S(σn+j+1,[7,3] + F (X))

S(σn+j,[6,5,2,1] + F (X)) = S(σn+j+1,[7,6,3,2] + F (X))

S(σn+j,[6,4,2,0] + F (X)) = S(σn+j+1,[7,5,3,1] + F (X))

S(σn+j,[6,5,4,3,2,1] + F (X)) = S(σn+j+1,[7,6,5,4,3,2,1] + F (X)),

are true for every natural number n.
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4. Diophantine equations with binomial coefficients

In this section we are interested in Diophantine equations of the form

(4.1)

n∑
l=0

(
n

l

)
xl = 0,

where xl belongs to some fixed bounded subset Γ of Z. Exponential sums of symmetric Boolean functions
are naturally connected to this problem.

Recall that exponential sums of symmetric Boolean functions can be expressed in terms of binomial sums.
To be specific, if 1 ≤ k1 < · · · < ks are integers, then

(4.2) S(σn,[k1,··· ,ks]) =

n∑
l=0

(−1)(
l

k1
)+···+( l

ks
)
(
n

l

)
.

Therefore, every time we find a balanced symmetric Boolean function, we also find a solution to (4.1) where
the xl’s belong to the set Γ = {−1, 1}. The converse is also true, that is, if we find a solution to (4.1) over
Γ = {−1, 1}, then we also find a balanced symmetric Boolean function. For example, consider the equation

(4.3)

(
8

0

)
−
(

8

1

)
−
(

8

2

)
−
(

8

3

)
+

(
8

4

)
+

(
8

5

)
−
(

8

6

)
−
(

8

7

)
+

(
8

8

)
= 0.

The corresponding balanced symmetric Boolean function is σ8,[1,2,3,5,7]. When the set considered is Γ =

{−1, 1}, then any solution to (4.1) is said to give a bisection of the binomial coefficients
(
n
l

)
, 0 ≤ l ≤ n.

Observe that such solution provides us with two disjoints sets A and A′ such that A ∪ A′ = {0, 1, 2, · · · , n}
and ∑

l∈A

(
n

l

)
=
∑
l∈A′

(
n

l

)
= 2n−1.

As mentioned in the introduction, the problem of bisecting binomial coefficients was first discussed by
Mitchell [17].

Continue with equation (4.1) over Γ = {−1, 1}. If n is even, then δl = ±(−1)l, for l = 0, 1, · · · , n,
are two solutions to (4.1). On the other hand, if n is odd, then the symmetry of the binomial coefficients
implies that (δ0, · · · , δ(n−1)/2,−δ(n−1)/2, · · · ,−δ0) are 2(n+1)/2 solutions to (4.1). These are called trivial
solutions. A balanced symmetric Boolean function in n variables which corresponds to one of the trivial
solutions of (4.1) over Γ = {−1, 1} is said to be a trivially balanced function. Computations suggest that a
majority of the balanced symmetric Boolean functions are trivially balanced, thus it is of great interest to
find non-trivially balanced symmetric Boolean functions. In the literature, these functions are called sporadic
balanced symmetric Boolean functions. For example, the relation (4.3) is not trivial, therefore σ8,[1,2,3,5,7] is
a sporadic balanced symmetric Boolean function. See [9, 10, 14] for more information. In [21], Sarkar and
Maitra showed that there is an infinite amount of sporadic balanced symmetric Boolean functions.

The above discussion shows the link between balancedness of symmetric Boolean functions and solutions
to (4.1) over the set Γ = {−1, 1}. We now turn our attention to balancedness of perturbations of the form
σn,[k1,··· ,ks] + F (X), where 1 ≤ k1 < · · · < ks are integers and F (X) is a non-zero Boolean polynomial in
j (fixed) variables, and its connection to equation (4.1). For simplicity of the writing, consider the case
σn,k + F (X). Recall that

(4.4) S(σn,k + F (X)) =

j∑
m=0

Cm(F )S

(
m∑
i=0

(
m

i

)
σn−j,k−i

)
,

where Cm(F ), for m = 0, 1, · · · , j, are given by

(4.5) Cm(F ) =
∑

x∈Fj
2 with w2(x)=m

(−1)F (x).

Expressing exponential sums of symmetric Boolean functions as binomial sums leads to

(4.6) S(σn+j,k + F (X)) =

n∑
l=0

(
j∑

m=0

Cm(F )(−1)
∑m

i=0 (m
i )( l

k−i)

)(
n

l

)
.
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Observe that ∣∣∣∣∣
j∑

m=0

Cm(F )(−1)
∑m

i=0 (m
i )( l

k−i)

∣∣∣∣∣ ≤
j∑

m=0

|Cm(F )|(4.7)

≤
j∑

m=0

(
j

m

)
= 2j .

Also,

(4.8)

j∑
m=0

Cm(F )(−1)
∑m

i=0 (m
i )( l

k−i) ≡
j∑

m=0

Cm(F ) = S(F ) ≡ 0 mod 2.

Therefore, balancedness of a perturbation of the form σn+j,k + F (X) is connected to solutions of (4.1) over
the set

Γ
(e)
j = {x ∈ 2Z : |x| ≤ 2j} = {0,±2,±4,±6, · · · ,±2j}.

Any solution to (4.1) over Γ
(e)
j can be divided by 2 to produce a solution of (4.1) over the set

Γj = {x ∈ Z : |x| ≤ 2j−1} = {0,±1,±2,±3, · · · ,±2j−1}.
The opposite is clearly true, that is, any solution to (4.1) over Γj can be multiplied by 2 to produce a solution

over Γ
(e)
j . Therefore, in this study, most of the results are written in the language of the set Γj .

Remark 4.1. The same conclusion can be reached from a perturbation of the form σn+j,[k1,··· ,ks] + F (X).
Also, observe that if F (X) is the zero polynomial, then we are back at the problem of bisecting binomial
coefficients and therefore the corresponding set is Γ = {−1, 1}.

As in the case for bisections of binomial coefficients, we can define trivial solutions to (4.1) over Γj . If n
is odd, then the symmetry of the binomial coefficients implies that

(4.9) (δ0, · · · , δ(n−1)/2,−δ(n−1)/2, · · · ,−δ0),

with δi ∈ Γj , are (2j + 1)
n+1
2 solutions to (4.1). If n is even, then

(4.10) δl = (−1)lm, for l = 0, 1, · · · , n, and m ∈ Γj

are 2j + 1 solutions to (4.1) over Γj . Also, the symmetry of the binomial coefficients implies that

(4.11) (δ0, · · · , δn/2−1, 0,−δn/2−1, · · · ,−δ0),

with δi ∈ Γj are (2j + 1)
n
2 solutions to (4.1) over Γj (observe that the trivial solution (0, 0, · · · , 0) is of the

forms (4.10) and (4.11)). Solutions of the form (4.9) for n odd or of the forms (4.10) or (4.11) for n even are
called trivial solutions to (4.1) over Γj .

There are other solutions which at first sight do not seem to be trivial, for example,

(4.12) −2

(
12

3

)
+ 2

(
12

4

)
+

(
12

6

)
− 2

(
12

7

)
+ 2

(
12

10

)
− 2

(
12

11

)
+ 2

(
12

12

)
= 0.

However, using the symmetry of binomial numbers, equation (4.12) can be re-written as

(4.13)

12∑
i=0

(−1)i
(

12

i

)
= 0,

which is of the form (4.10). This invites us to define equivalence of solutions. We say that two solutions

(δ
(1)
0 , δ

(1)
1 , · · · , δ(1)

n ) and (δ
(2)
0 , δ

(2)
1 , · · · , δ(2)

n ) are equivalent, and write (δ
(1)
0 , δ

(1)
1 , · · · , δ(1)

n ) ∼ (δ
(2)
0 , δ

(2)
1 , · · · , δ(2)

n ),
if

(1) both are non-zero solutions and

1

g2
(δ

(2)
0 , δ

(2)
1 , · · · , δ(2)

n ) = ± 1

g1
(δ

(1)
0 , δ

(1)
1 , · · · , δ(1)

n ),

where gi = gcd(δ
(i)
0 , δ

(i)
1 , · · · , δ(i)

n ), or
(2) one solution can be obtained from the other by using the symmetry of the binomial numbers, as it

is the case of (4.12) and (4.13), or
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(3) one solution can be obtained from the other by combining the previous two cases.

Because of this, we now say that solutions of the form (4.9), (4.10) or (4.11) are written in trivial form
(or just that they are trivial form solutions) and extend the definition of trivial solution to any solution
that is equivalent to one of the trivial form solutions. For example, (4.12) is a trivial solution. For δ =
(δ0, δ1, · · · , δn) ∈ Γj , define

[δ0, δ1, · · · , δn] = {(δ′0, δ′1, · · · , δ′n) ∈ Γj | (δ′0, δ′1, · · · , δ′n) ∼ (δ0, δ1, · · · , δn)},
that is, [δ0, δ1, · · · , δn] is the equivalence class of δ under ∼. Observe that if n is odd, then every trivial form
solution, and therefore every trivial solution, belongs to the class [0, 0, · · · , 0]. If n is even, then every trivial
solution belongs to either [0, 0, · · · , 0] or [1,−1, 1,−1, · · · ,−1, 1].

As expected, the number of solutions to (4.1) over Γj grows exponentially in n. This can already be seen

in the number of trivial form solutions, since there are (2j+1)
n+1
2 such solutions for n odd and (2j+1)

n
2 +2j

for n even. In fact, let Ω(n, j) = {δ ∈ Γnj | δ is a solution to (4.1)} and define γj(n) := |Ω(n, j)|, that is, the
number of solutions to (4.1) that lie in Γj . Table 1 contains γj(n) for various n’s and j’s.

Table 1. Number of solutions to (4.1) that lie in Γj .

n 1 2 3 4 5 6 7 8 9 10
γ1(n) 3 5 9 15 39 45 129 149 243 369
γ2(n) 5 13 41 103 275 685 2525 5221 13897 32717
γ3(n) 9 41 219 1033 5181 23035 121921 * * *
γ4(n) 17 145 1469 12969 120521 * * * * *
γ5(n) 33 545 10659 183477 * * * * * *
γ6(n) 65 2113 81421 * * * * * * *
γ7(n) 129 8321 636099 * * * * * * *

Remark 4.2. The reader is invited to read the very interesting paper of Ionaşcu, Martinsen and Stǎnicǎ
about bisecting binomial coefficients [13]. As part of their work, they consider the number of nontrivial bi-
sections. They found many previously unknown infinite classes of integers which admit nontrivial bisections,
and a class with only trivial bisections. They also found several bounds for the number of nontrivial bisec-
tions and compute the exact number of such bisections for n ≤ 51. Some of these results may be extended
to perturbations of symmetric Boolean functions. For example, following similar techniques form [13] we
obtained an integral representation for γj(n). Let Vj = [0, 2j−1] ∩ Z. The notation x = (x0, x1, · · · , xn) is

used to represent a vector x ∈ Vn+1
j . For x ∈ Vn+1

j , let w(x) represents the number of non-zero entries of x.

The number γj(n) is given by the following integral

(4.14) γj(n) =
∑

x∈Vn+1
j

2w(x)

∫ 1

0

n∏
i=0

cos

(
πxi

(
n

i

)
s

)
ds.

Many of the solutions that are counted in Table 1 are equivalent to some others. Therefore, the amount
of “meaningful” solutions should be significantly smaller than the numbers that are presented in Table 1.
Define ωj(n) to be the number of different equivalence classes on Ω(n, j) under ∼, that is, the cardinality of
the quotient set Ω(n, j)/ ∼. For example,

(4.15) Ω(4, 2)/ ∼ = {[0, 0, 0, 0, 0], [0, 1,−2, 2, 0], [2,−2, 1, 0, 0], [2, 1,−1, 0, 0], [2,−1, 0, 0, 2]},
and therefore ω2(4) = 5. Table 2 contains ωj(n) for various n’s and j’s. The order of magnitude of these
numbers is smaller than the ones on Table 1, as expected, however, it is apparent that there are many
meaningful solutions that are not trivial.

A balanced perturbation of the form σn+j,[k1,··· ,ks] +F (X) is said to be trivially balanced if it corresponds
to one of the trivial solutions of (4.1) over Γj . Analogous to the case for bisections of binomial coefficients,
a non-trivially balanced perturbation of the form σn+j,[k1,··· ,ks] + F (X) is called sporadic balanced Boolean
perturbation. As it is the case of balanced symmetric Boolean functions, many balanced perturbations seem
to be trivially balanced. For example, consider σn,k+X1, which is the simplest perturbation to an elementary
symmetric Boolean polynomial. We have the following result.
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Table 2. Number of different equivalence classes on Ω(n, j) under ∼.

n 1 2 3 4 5 6 7 8 9 10
ω1(n) 1 2 1 3 2 3 3 7 1 5
ω2(n) 1 2 2 5 2 13 7 36 26 71
ω3(n) 1 2 2 13 10 72 77 389 274 1681
ω4(n) 1 2 2 45 37 504 443 5076 4336 *
ω5(n) 1 2 2 161 127 3811 3119 * * *
ω6(n) 1 2 2 649 481 29742 * * * *
ω7(n) 1 2 2 2521 2005 * * * * *

Theorem 4.3. Let k be a positive integer. Let r = blog2(k)c+ 1. The perturbation σn,k +X1 is (trivially)
balanced for n = 2rm+ k − 1 where m is any natural number.

Proof. Recall that

S(σn,k +X1) = S(σn−1,k)− S(σn−1,[k,k−1])(4.16)

=

n−1∑
l=0

(−1)(
l
k)
(
n− 1

l

)
−
n−1∑
l=0

(−1)(
l
k)+( l

k−1)
(
n− 1

l

)
.

Let N(k) be the set of integers l such that
(
l
k

)
is odd. Similarly, define N(k, k− 1) to be the set of integers l

such that
(
l
k

)
+
(

l
k−1

)
is odd. Lucas’ Theorem implies that l ∈ N(k) if and only if l− 1 ∈ N(k, k − 1). Also,

the choice n = 2rm+ k − 1 implies that if 0 ≤ l ≤ n, then l ∈ N(k) if and only if n− l ∈ N(k).
Suppose that l0 ∈ N(k), that is, that the coefficient of

(4.17)

(
n− 1

l0

)
in the first sum of (4.16) is −1. By the choice of n one has n − l0 ∈ N(k). But if this is true, then
n− l0 − 1 ∈ N(k, k − 1) and therefore the coefficient of

(4.18)

(
n− 1

n− l0 − 1

)
=

(
n− 1

n− 1− (n− l0 − 1)

)
=

(
n− 1

l0

)
in the second sum of (4.16) is also −1. The converse is also true. If l1 ∈ N(k, k − 1), then the coefficient of

(4.19)

(
n− 1

l1

)
in the second sum of (4.16) is −1. But then, l1 + 1 ∈ N(k) and by the choice of n one has that n− (l1 + 1) =
n− 1− l1 ∈ N(k). Thus, the coefficient of

(4.20)

(
n− 1

n− 1− l1

)
=

(
n− 1

l1

)
in the first sum of (4.16) is also −1. We conclude that σn,k +X1 is trivially balanced. �

Example 4.4. Consider the perturbation σ20,5 +X1. Theorem 4.3 implies that this perturbation is trivially
balanced. Explicitly,

S(σ20,5 +X1) =

19∑
l=0

(
(−1)(

l
5) − (−1)(

l
5)+(l

4)
)(19

l

)
= 2

(
19

4

)
− 2

(
19

5

)
+ 2

(
19

6

)
− 2

(
19

7

)
+ 2

(
19

12

)
− 2

(
19

13

)
+ 2

(
19

14

)
− 2

(
19

15

)
(4.21)

= 0 (trivially).

We had tried to find sporadic balanced perturbations of the form σn,k+X1, but our attempts failed. This
led us to believe that a conjecture similar to the one presented by Cusick, Li and Stǎnicǎ in [10] for the case
of elementary symmetric Boolean functions holds (also see [11]). To be specific, we conjecture the following:
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Conjecture 4.5. No perturbation of the form σn,k + X1 is balanced except for the trivial cases, i.e. when
n = 2rm+ k − 1 where r = blog2(ks)c+ 1 and m is a positive integer.

Similar techniques can be used to show that other infinite families are trivially balanced. However, we
will not show them here, except for the next example (for which we omit the proof).

Theorem 4.6. The perturbation

(4.22) σ2l+1D−1,2l +X1 +X2 + · · ·+X2m,

where D, l and m are positive integers, is trivially balanced. In view of Theorem 3.5, the perturbation

(4.23) σ2l+1D,2l+1 +X1 +X2 + · · ·+X2m

is also trivially balanced.

As it is the case of symmetric Boolean functions, computations suggest that trivially balanced pertur-
bations are quite common. Therefore, it is a good idea for us to study them in more detail. Observe that
Theorem 4.3 implies that once σn,k+X1 is trivially balanced at one point, for example, when n = 2r +k−1,
then σn,k + X1 is trivially balanced for infinitely many n, i.e for n = 2rm + k − 1 where m is a positive
integer. This is not a coincidence, in fact, it is true for every perturbation.

Let 1 ≤ k1 < · · · < ks be integers. Consider σn+j,[k1,··· ,ks] + F (X) where F (X) is a Boolean polynomial
in the variables X1, · · · , Xj (j fixed). Suppose that σn+j,[k1,··· ,ks] + F (X) is trivially balanced, that is, it
corresponds to a trivial solution (δ0, δ1, · · · , δn) to (4.1) over Γj . For the sake of simplicity, suppose that
(δ0, δ1, · · · , δn) is a trivial solution of the form δl = −δn−l.

The value of δl is given by

δl =

j∑
m=0

Cm(F )(−1)
∑m

i=0 (m
i )
[
( l
k1−i)+···+( l

ks−i)
]

(4.24)

=

j∑
m=0

Cm(F )(−1)

(
(l+m

k1
)+···+(l+m

ks
)
)
,

and we know that

(4.25)

(
l +m

k1

)
, · · · ,

(
l +m

ks

)
are all periodic modulo 2 with a period length 2r where r = blog2(ks)c+ 1. This means that

δl = δl+2r and δn−l = δn−l+2r ,

but then,
δl = −δn−l = −δn+2r−l.

In other words, the tuple
(δ0, δ1, · · · , δn+2r )

is a trivial solution to (4.1) over Γj . However, this tuple corresponds to S(σn+2r+j,[k1,··· ,ks] + F (X)), i.e.

(4.26) S(σn+2r+j,[k1,··· ,ks] + F (X)) =

n+2r∑
l=0

(2δl)

(
n+ 2r

l

)
= 0.

This discussion leads to the following result.

Theorem 4.7. Let 1 ≤ k1 < · · · < ks be integers and F (X) be a Boolean polynomial in the variables
X1, · · · , Xj (j fixed). Let r = blog2(ks)c+ 1. Suppose that n0 is a positive integer such that

(4.27) σn0+j,[k1,··· ,ks] + F (X)

is trivially balanced. Then,

(4.28) σn0+m·2r+j,[k1,··· ,ks] + F (X)

is trivially balanced for every non-negative integer m.

Proof. This is a direct consequence of the above discussion. �
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Example 4.8. Consider the perturbation σ23,8 + F (X) where

F (X) = X1 +X2 +X3 +X4 +X5 +X6 +X7 +X8 +X9.

This perturbation is actually balanced. It corresponds to the equation

(4.29)

14∑
l=0

δl

(
14

l

)
= 0,

where

δ = (δ0, δ1, · · · , δ14)

= (−8, 28,−56, 70,−56, 28,−8, 0, 8,−28, 56,−70, 56,−28, 8).

Therefore, σ23,8 +F (X) is trivially balanced. Theorem 4.7 implies that σ23+16m,8 +F (X) is trivially balanced
for every non-negative integer m. Now, since F (X) is balanced and σ23+16m,8 + F (X) is balanced, then
Theorem 3.5 implies that the perturbation σ24,9 + F (X) is also balanced. In fact, the perturbation is
trivially balanced (as expected) and it corresponds to the equation

(4.30)

15∑
l=0

δl

(
15

l

)
= 0,

where

δ = (δ0, δ1, · · · , δ15)

= (1,−9, 37,−93, 163,−219, 247,−255, 255,−247, 219,−163, 93,−37, 9,−1).

Theorem 4.7 implies that σ24+16m,9 + F (X) is trivially balanced for every non-negative integer m.

Example 4.9. Consider the perturbation σ7,4 +X1 +X2, which is trivially balanced. The solution to (4.1)
over Γ2 that corresponds to S(σ7,4 +X1 +X2) is

−
(

5

2

)
+

(
5

3

)
= 0.

In view of Theorem 4.7, we conclude that σ7+8m,4 + X1 + X2 is trivially balanced for every non-negative
integer m. Now apply Theorem 3.5 to conclude that σ8+8m,5 +X1 +X2 is balanced for every non-negative
integer m. Observe that the solution to (4.1) over Γ2 that corresponds to S(σ8,5 +X1 +X2) is

−
(

6

3

)
+ 2

(
6

4

)
− 2

(
6

5

)
+ 2

(
6

6

)
= 0,

which, at first, does not look like a trivial solution until we realize that it is equivalent to(
6

0

)
−
(

6

1

)
+

(
6

2

)
−
(

6

3

)
+

(
6

4

)
−
(

6

5

)
+

(
6

6

)
= 0.

Thus, σ8,5 +X1 +X2 is trivially balanced. The same conclusion can be reached for σ8+8m,5 +X1 +X2.

Example 4.10. The reader can check that σ15,[3,4,5,6] +X1 +X2 +X3 is balanced and that its corresponding
solution to (4.1) over Γ3 is

δ = (δ0, δ1, · · · , δ12)

= (1,−2, 0, 2,−1, 0, 0, 0, 1,−2, 0, 2,−1).

Therefore, σ15+8m,[3,4,5,6] +X1 +X2 +X3 is trivially balanced for every non-negative integer m. This family
of functions can be lifted up by Theorem 3.8 to conclude that σ16+8m,[4,5,6,7] +X1 +X2 +X3 is also balanced
for every non-negative integer m.

Let us recap what we have so far. Exponential sums of perturbations of symmetric Boolean functions
are connected to solutions of the equation (4.1) over some bounded subsets of the integers. As it is the
case for symmetric Boolean functions, the concept of trivial and non-trivial solutions can be defined as
well as the concepts of trivially balanced perturbation and sporadic balanced perturbation. Similar to the
case of symmetric Boolean functions, computations suggest that many balanced perturbations turn out to
be trivially balanced. Moreover, Theorem 4.7 states that once a perturbation of fixed degree is trivially
balanced at one n, then it is trivially balanced for infinitely many n.
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With regard to this last theorem, in the case of a symmetric Boolean function of fixed degree, only trivially
balanced cases exist when the number of variables grows. This was first conjectured by Canteaut and Videau
[4] and proved by Guo, Gao and Zhao [12]. In the next section, we establish a similar result for the type
of perturbations considered in this article. The techniques to be used are inspired by the ones presented in
[12].

5. Balancedness of perturbations as the number of variables grows

In this section we consider balancedness of perturbations when the number of variables grows. This
problem provides information about the converse of the statement of Theorem 4.7. The techniques used in
this section are very similar to the ones presented in [12].

Consider a perturbation of the form σn,[k1,··· ,ks] +F (X) where 1 ≤ k1 < · · · < ks are integers and F (X) is
a polynomial in the variables X1, · · · , Xj with j fixed. The problem is to characterize when S(σn,[k1,··· ,ks] +
F (X)) = 0 for n big enough. Recall that the exponential sum S(σn,[k1,··· ,ks] + F (X)) satisfies recurrence
(2.6), that is, it satisfies

(5.1) xn =

2r−1∑
l=1

(−1)l−1

(
2r

l

)
xn−l,

where r = blog2(ks)c + 1. In other words, the sequence of exponential sums of our perturbation is a real
solution to the linear recurrence (5.1). Therefore, we first answer the question of when a real solution {an}
to (5.1) is zero for some n big enough.

The characteristic polynomial associated to (5.1) is

(5.2) (X − 2)Φ4(X − 1)Φ8(X − 1) · · ·Φ2r (X − 1).

This implies that any solution {an} to (5.1) has the form

(5.3) an = d0 · 2n +

2r−1∑
l=1

dlλ
n
l ,

where λl = 1 + ξ−1
l with ξl = exp

(
iπl

2r−1

)
and i =

√
−1. Observe that ξ2r−l = ξl, λ2r−l = λl, and λ2r−1 = 0.

Moreover, if {an} is a real solution, then we also have d2r−l = dl. From now on, suppose that {an} is a real
solution to (5.1).

We now follow [12] and express {an} as

(5.4) an = d0 · 2n + 2

2r−1−1∑
l=1

Re(dlλ
n
l ),

where Re(z) denotes the real part of z, and define

(5.5) tl(n) = Re(dlλ
n
l ), for 0 ≤ l ≤ 2r−1 − 1.

This leads to

(5.6) an = t0(n) + 2

2r−1−1∑
l=1

tl(n).

The next lemma gives a characterization of when an equals zero for some n big enough. It is basically the
same statement as Lemma 3 of [12], which itself is a modification of a proof of Cai, Green and Thierauf [3].
The proof follows almost verbatim as the one in [12].

Lemma 5.1. Suppose that {an} is a real solution to the linear recurrence (5.1). Then there exists an integer
n0 such that for any n > n0,

an = 0 if and only tl(n) = 0, for 0 ≤ l ≤ 2r−1 − 1.

The number tl(n) can be expressed as

(5.7) tl(n) = |dl|
(

2 cos

(
πl

2r

))n
cos

(
arg(dl)−

πnl

2r

)
.
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This implies that Remark 2 of [12] also applies and therefore,

tl(n) = 0 if and only if dl = −ξnl dl, for any 0 ≤ l ≤ 2r−1 − 1.

This characterizes the cases when a real solution an to recurrence (5.1) is zero for n big, that is, there exists
an integer n0 such that for any n > n0,

an = 0 if and only dl = −ξnl dl, for any 0 ≤ l ≤ 2r−1 − 1.

Let us go back to our perturbations. Again, for simplicity, consider a perturbation of the form σn,k+F (X)
where F (X) is a Boolean polynomial in the variables X1, · · · , Xj with j fixed. Recall that

(5.8) S(σn+j,k + F (X)) =

n∑
l=0

(
j∑

m=0

Cm(F )(−1)
∑m

i=0 (m
i )( l

k−i)

)(
n

l

)
.

Let δ
(F )
l (k) be defined as

(5.9) δ
(F )
l (k) =

j∑
m=0

Cm(F )(−1)
∑m

i=0 (m
i )( l

k−i).

In other words, (5.8) can be re-written as

(5.10) S(σn+j,k + F (X)) =

n∑
l=0

δ
(F )
l (k)

(
n

l

)
.

Observe that if we find a value of n for which (5.8) is balanced, then we find a solution to the Diophantine
equation

(5.11)

n∑
l=0

(
n

l

)
xl = 0,

over Γ
(e)
j and the solution would be given by (δ

(F )
0 (k), δ

(F )
2 (k), · · · , δ(F )

n (k)).

Recall that every solution to (5.1) has the form (5.3). The exponential sum of our perturbations, as well
as the ones of symmetric Boolean functions, satisfy (5.1), therefore they can be expressed in form (5.3). In
the case of the symmetric Boolean function σn,[k1,··· ,ks], where 1 ≤ k1 < · · · < ks are integers, Cai, Green
and Thierauf [3] found an explicit formula for the coefficients in (5.3), that is, if r = blog2(ks)c+ 1, then

(5.12) S(σn,[k1,··· ,ks]) = c0(k1, · · · , ks) · 2n +

2r−1∑
l=1

cl(k1, · · · , ks) · λl,

where

(5.13) cl(k1, · · · , ks) =
1

2r

2r−1∑
i=0

(−1)(
i

k1
)+···+( i

ks
)ξil .

In view of equation (2.13), this implies that, for r = blog2(k)c+ 1, one has

(5.14) S(σn+j,k + F (X)) = d0 · 2n +

2r−1∑
l=1

dl · λnl ,

where

dl =

j∑
m=0

Cm(F )

(
1

2r

2r−1∑
a=0

(−1)
∑m

i=0 (m
i )( a

k−i)ξal

)

=
1

2r

2r−1∑
a=0

(
j∑

m=0

Cm(F )(−1)
∑m

i=0 (m
i )( a

k−i)

)
ξal

=
1

2r

2r−1∑
a=0

δ(F )
a (k) · ξal
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Remark 5.2. This discussion carries over to perturbations of the form σn,[k1,·,ks] +F (X) without too much
effort.

With this information at hand, we are ready to present one of the main results of this article. This result
is a generalization of Canteaut and Videau’s observation for symmetric Boolean functions of fixed degree.
To be specific, we show that, excluding the trivial cases, balanced perturbations of fixed degree do not exist
when the number of variables grows.

Theorem 5.3. Suppose that 1 ≤ k1 < · · · < ks are integers and F (X) is a Boolean polynomial in the
variables X1, · · · , Xj (j fixed). There exists an n0 such that for every n > n0, σn+j,[k1,··· ,ks] + F (X) is
balanced if and only if it is trivially balanced.

Proof. We present the proof for the case of a perturbation of the form σn+j,k + F (X). The general case
follows by the same argument.

Recall that {S(σn+j,k +F (X))} is a real solution to (5.1). Therefore, there exists an integer n0 such that
for any n > n0,

(5.15) S(σn+j,k + F (X)) = 0 if and only if dl = −ξnl dl, for any 0 ≤ l ≤ 2r−1 − 1,

where

dl =
1

2r

2r−1∑
a=0

(
j∑

m=0

Cm(F )(−1)
∑m

i=0 (m
i )( a

k−i)

)
ξal(5.16)

=
1

2r

2r−1∑
a=0

δ(F )
a (k) · ξal ,

and r = blog2(k)c+ 1.
Suppose that n > n0 and that dl = −ξnl dl for any 0 ≤ l ≤ 2r−1 − 1. Observe that

−ξnl dl = −ξ
n
l

2r

2r−1∑
a=0

(
j∑

m=0

Cm(F )(−1)
∑m

i=0 (m
i )( a

k−i)

)
ξ−al(5.17)

= − 1

2r

2r−1∑
a=0

(
j∑

m=0

Cm(F )(−1)
∑m

i=0 (m
i )( a

k−i)

)
ξn−al

= − 1

2r

n∑
t=n−2r+1

(
j∑

m=0

Cm(F )(−1)
∑m

i=0 (m
i )(n−t

k−i)

)
ξtl

= − 1

2r

2r−1∑
a=0

(
j∑

m=0

Cm(F )(−1)
∑m

i=0 (m
i )(n−a

k−i)

)
ξal

= − 1

2r

2r−1∑
a=0

δ
(F )
n−a(k) · ξal ,

where the previous to the last identity holds because
(∑j

m=0 Cm(F )(−1)
∑m

i=0 (m
i )(n−a

k−i)
)
ξal has period 2r.

Therefore,

dl = −ξnl dl for any 0 ≤ l ≤ 2r−1 − 1,

holds if and only if

(5.18)

2r−1∑
a=0

(δ(F )
a (k) + δ

(F )
n−a(k))ξal = 0, for any 0 ≤ l ≤ 2r−1 − 1.

Let f(X) be the polynomial

(5.19) f(X) =

2r−1∑
a=0

(δ(F )
a (k) + δ

(F )
n−a(k))Xa.
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Observe that equation (5.18) implies that all polynomials on the list

X − 1, X2 + 1, X4 + 1, · · · , X2r−1

+ 1

divide f(X). But all these polynomials are irreducible in Q[X], therefore

(5.20) (X − 1)

r−1∏
t=1

(X2t

+ 1) divides f(X).

However, the degree of both (X−1)
∏r−1
t=1 (X2t

+1) and f(X) is 2r−1. Since Q[X] is a Unique Factorization
Domain, then it follows that

(5.21) F (X) = z · (X − 1)

r−1∏
t=1

(X2t

+ 1),

for some constant z (it is not hard to see that z must be an integer). But

(5.22) (X − 1)

r−1∏
t=1

(X2t

+ 1) = −1 +X −X2 +X3 −X4 + · · · −X2r−2 +X2r−1.

Equations (5.19), (5.21) and (5.22) yield

(5.23) δ(F )
a (k) + δ

(F )
n−a(k) = (−1)a−1z for 0 ≤ a ≤ 2r − 1.

Note that equation (5.23) holds beyond the range 0 ≤ a ≤ 2r − 1 because δ
(F )
a (k) has period 2r.

Thus, when n is big enough, equation (5.23) characterizes all solutions

(δ
(F )
0 (k), δ

(F )
1 (k), δ

(F )
2 (k), · · · , δ(F )

n (k))

to the Diophantine equation (5.11) over the set Γ
(e)
j that come from our perturbation. The next step is to

show that all of them are trivial.
Suppose first that n is odd, that is, suppose that n = 2m+ 1. We know that

(5.24) δ(F )
a (k) + δ

(F )
2m+1−a(k) = (−1)a−1z,

where z is a fixed integer. Let a = m, then

(5.25) δ(F )
m (k) + δ

(F )
m+1(k) = (−1)m−1z.

On the other hand, let a = m+ 1. Then,

(5.26) δ
(F )
m+1(k) + δ(F )

m (k) = (−1)mz.

Equations (5.25) and (5.26) imply that z = 0. But then

(5.27) δ
(F )
n−a(k) = −δ(F )

a (k)

and we conclude that the perturbation is trivially balanced when n is odd.
Suppose now that n is even, i.e. n = 2m. As before, we know that

(5.28) δ(F )
a (k) + δ

(F )
2m−a(k) = (−1)a−1z,

where z is a fixed integer. If z = 0, then it is clear that the perturbation is trivially balanced. Thus, suppose
that z 6= 0. Let a = m in equation (5.28). Then,

(5.29) 2δ(F )
m = (−1)m−1z

and therefore z is even. Say z = 2z0 with z0 a non-zero integer. Then, δ
(F )
m = (−1)m−1z0 and

(δ
(F )
0 (k), δ

(F )
1 (k), · · · , δ(F )

2m (k))

∼ (δ
(F )
0 (k) + δ

(F )
2m (k), δ

(F )
1 (k) + δ

(F )
2m−1(k), · · · , δ(F )

m−1(k) + δ
(F )
m+1(k), δ(F )

m (k), 0, 0, · · · , 0)(5.30)

∼ (2z0,−2z0, · · · , (−1)m2z0, (−1)m−1z0, 0, 0, · · · , 0)

∼ (2,−2, · · · , (−1)m2, (−1)m−1, 0, 0, · · · , 0)

∼ (1,−1, 1,−1, · · · ,−1, 1).
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We conclude that the perturbation is also trivially balanced when n is even.
Since it is clear that trivially balanced implies balanced, then we conclude that there is an integer n0 such

that for any n > n0, the perturbation σn,k + F (X) is balanced if and only if it is trivially balanced. This
concludes the proof.

�

6. Some examples of sporadic balanced perturbations

In the previous section we learned that, excluding the trivial cases, balanced perturbations of fixed degree
do not exist when the number of variables grows. Thus, as in the case for symmetric Boolean functions, it
is of great interest to find sporadic balanced perturbations. Next are some examples of sporadic balanced
perturbations and their corresponding solutions to (4.1).

Example 6.1. The perturbation σ24,14 +X1 +X2 is balanced and sporadic. The solution to (4.1) over Γ2

that corresponds to S(σ24,14 +X1 +X2) is

(6.1)

(
22

12

)
−
(

22

13

)
−
(

22

14

)
+

(
22

15

)
= 0.

Observe that Theorem 3.5 implies that σ25,15 +X1 +X2 is also balanced and sporadic. The solution to (4.1)
over Γ2 that corresponds to S(σ25,15 +X1 +X2) is

(6.2)

(
23

13

)
− 2

(
23

14

)
+

(
23

15

)
= 0.

Equation (6.2) corresponds to one solution to the following three consecutive binomial coefficients Diophan-
tine equation

(6.3)

(
n

k + 2

)
− 2

(
n

k + 1

)
+

(
n

k

)
= 0.

Luca and Szalay [16] studied equations of the form

(6.4) A

(
n

k

)
+B

(
n

k + 1

)
+ C

(
n

k + 2

)
= 0,

where A,B,C ∈ Z, A > 0, C 6= 0 and gcd(A,B,C) = 1. As part of their study, they provided infinitely
many solutions to (6.3) given by

(6.5)

(
t2 − 2

(t2 + t− 4)/2

)
− 2

(
t2 − 2

(t2 + t− 2)/2

)
+

(
t2 − 2

(t2 + t)/2

)
= 0,

where t is any integer satisfying |t| ≥ 3. Observe that (6.2) corresponds to (6.5) when t = 5. Moreover, (6.1)
can be obtained from (6.2) by applying the identity

(6.6)

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Example 6.2. In [23], Singmaster shows that the Diophantine equation

(6.7)

(
n

k

)
+

(
n

k + 1

)
=

(
n

k + 2

)
,

has infinitely many solutions given by n = F2i+2F2i+3 − 1 and k = F2iF2i+3 − 1, where Fn represent the
n-th Fibonacci number. The smallest of these solutions is given by(

F4F5 − 1

F2F5 − 1

)
+

(
F4F5 − 1

F2F5

)
−
(
F4F5 − 1

F2F5 + 1

)
= 0(6.8) (

14

4

)
+

(
14

5

)
−
(

14

6

)
= 0.

Observe (6.8) is a non-trivial solution to (4.1) over Γ1. A nice problem is to find sporadic balanced pertur-
bations of the form σ15,[k1,··· ,ks] + X1 that corresponds to (6.8). There are only four of such perturbations
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of degree less than or equal to 14. The first one is σ15,[5,6,10,12,13] +X1, which corresponds to the equivalent
solution

(6.9)

(
14

4

)
−
(

14

6

)
+

(
14

9

)
= 0.

Another is σ15,[6,8,9,10,13] +X1, which corresponds to the equivalent solution

(6.10)

(
14

5

)
−
(

14

8

)
+

(
14

10

)
= 0.

The third one is σ15,[6,7,11,12,14] +X1 and it corresponds to the equivalent solution

(6.11)

(
14

5

)
−
(

14

6

)
+

(
14

10

)
= 0.

Finally, the last one is σ15,[5,6,7,8,9,11,14] +X1. The corresponding equivalent solution is

(6.12)

(
14

4

)
−
(

14

8

)
+

(
14

9

)
= 0.

Example 6.3. Let us go back to the equation (6.5). Note that the smallest solution to this equation is
given by

(6.13)

(
7

4

)
− 2

(
7

5

)
+

(
7

6

)
= 0.

Table 3 includes all sporadic balanced perturbations of the form σ8,[k1,··· ,ks] +X1 for ks ≤ 7 for which their
corresponding solutions to the Diophantine equation (4.1) are equivalent to (6.13).

Table 3. Perturbations and their corresponding solutions to (4.1).

Perturbation Corresponding solution
σ8,[3,6] +X1 (0, 0, 1,−1, 0, 1,−1, 0)
σ8,[1,2,6] +X1 (1, 0,−1, 0, 1,−1, 1,−1)
σ8,[1,5,6] +X1 (1,−1, 1,−1, 0, 1, 0,−1)
σ8,[2,3,5,6] +X1 (0, 1,−1, 0, 1,−1, 0, 0)
σ8,[1,4,7] +X1 (1,−1, 1, 0,−1, 1, 0,−1)
σ8,[2,3,4,7] +X1 (0, 1,−1, 1, 0,−1, 0, 0)
σ8,[3,4,5,7] +X1 (0, 0, 1, 0,−1, 1,−1, 0)
σ8,[1,2,4,5,7] +X1 (1, 0,−1, 1, 0,−1, 1,−1)

Table 4 includes all sporadic balanced perturbations of the form σ9,[k1,··· ,ks] +X1 +X2 for ks ≤ 8 for which
their corresponding solutions to the Diophantine equation (4.1) are equivalent to (6.13).

Similar examples can be produced with the aid of computers. A Mathematica implementation can be
found in

http://emmy.uprrp.edu/lmedina/papers/diophpert/.

For example, using this implementation, we found that there are 265 sporadic balanced perturbations of
the form σn,[k1,··· ,ks] +X1 with n, ks ≤ 17. Also, there are 606 sporadic balanced perturbations of the form
σn,[k1,··· ,ks] + X1 + X2 with n, ks ≤ 17. The reader is invited to use this Mathematica implementation to
find more.
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Table 4. Perturbations and their corresponding solutions to (4.1).

Perturbation Corresponding solution
σ9,[3,6] +X1 +X2 (0, 0, 1,−1, 0, 1,−1, 0)
σ9,[3,7] +X1 +X2 (0,−1, 2,−1, 0, 0, 0, 0)
σ9,[6,7] +X1 +X2 (0, 0, 0, 0,−1, 2,−1, 0)
σ9,[1,3,7] +X1 +X2 (2,−1, 0,−1, 2,−2, 2,−2)
σ9,[1,4,7] +X1 +X2 (2,−2, 1, 1,−2, 1, 1,−2)
σ9,[1,6,7] +X1 +X2 (2,−2, 2,−2, 1, 0, 1,−2)
σ9,[1,2,3,7] +X1 +X2 (1, 0, 1,−2, 1, 1,−1,−1)
σ9,[1,2,4,7] +X1 +X2 (1, 1,−2, 2,−1, 0, 0,−1)
σ9,[1,2,6,7] +X1 +X2 (1, 1,−1,−1, 2,−1, 0,−1)
σ9,[1,3,4,6,7] +X1 +X2 (2,−1,−1, 2,−1,−1, 2,−2)
σ9,[1,2,3,4,6,7] +X1 +X2 (1, 0, 0, 1,−2, 2,−1,−1)
σ9,[5,8] +X1 +X2 (0, 0, 0,−1, 2,−2, 1, 0)
σ9,[2,5,8] +X1 +X2 (−1, 1, 1,−2, 1, 1,−2, 1)
σ9,[3,4,5,8] +X1 +X2 (0,−1, 1, 1,−2, 1, 0, 0)
σ9,[3,5,6,8] +X1 +X2 (0,−1, 2,−2, 1, 0, 0, 0)
σ9,[4,5,6,8] +X1 +X2 (0, 0,−1, 2,−1,−1, 1, 0)
σ9,[2,3,4,5,8] +X1 +X2 (−1, 2,−2, 2,−1, 0,−1, 1)
σ9,[2,3,5,6,8] +X1 +X2 (−1, 2,−1,−1, 2,−1,−1, 1)
σ9,[2,4,5,6,8] +X1 +X2 (−1, 1, 0, 1,−2, 2,−2, 1)
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