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Abstract. In this paper we compute the exact divisibility of some exponential

sums over Fp. Our results imply that these families of polynomials are not

permutation polynomials of Fp. Also, we apply our results to the Waring
problem.

1. Introduction

Exponential sums have been applied in many areas of mathematics. Divisibility
of exponential sums is an area of the theory of exponential sums that has received
considered attention. Many authors have studied the p-adic divisibility of the roots
of L-function associated to the exponential sum. That information is encoded in
the Newton polygon of the L-function ([20, 24, 22, 25]). As the value of an
exponential sum is equal to the sum of the roots of the L-function associated to
it, any estimates in those imply an estimate for the divisibility of the exponential
sum. Sometimes some of the roots of the L-function associated to the exponential
sum have the same p-divisibility and when added together, the p-divisibility of the
exponential sum increases. In this paper we are interested in the divisibility of the
exponential sums associated to polynomials over a finite field of odd characteristic.

In general, there are very good estimates for the divisibility of exponential
sums (for example [21, 1, 15, 16, 2]). In this paper, we address the question of
computing the exact divisibility of exponential sums associated to polynomials over
Fp. This is a difficult question, but in some cases it can be computed. Everytime we
compute the exact divisibility of a family of exponential sums we can conclude two
things. First, that each value of the exponential sum is not equal to zero and second,
that the polynomial associated to the exponential sum is not a permutation of the
finite field. In this paper we compute exact divisibility of families of exponential
sums associated to the following polynomials:

(1) F (X) = aXd1 + bXd2 ,
(2) the polynomials containing monomials of type Xd1 and Xd2 satisfying

d1 + d2 = p− 1,
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under some natural conditions.
The original Waring’s problem is to find the minimum number of variables

such that the equation Xd
1 + · · ·+Xd

n = a has at least one solution for any natural
number a. This minimum number is called the Waring number associated to d.
Many authors have considered the Waring problem over finite fields. There are
many bounds for Waring numbers and some can be found in [23, 10, 4]. Many
of these bounds are consequences of good estimates of the absolute value of Gauss
sums ([11], [8]) or methods of arithmetic combinatorics [4], [18].

In the literature of the Waring problem over finite fields, the following gen-
eralization has been considered: Given a polynomial F (X) over Fp, estimate the
minimum number of variables such that

F (X1) + · · ·+ F (Xn) = a(1)

has at least one solution over Fp for any a ∈ Fp. We denote this number by γ(F, q).
The above problem can be related to the following problem: Given polynomials
F1(X1), . . . , Fn(Xn) over Fp, find conditions such that every a ∈ Fp can be written
as

a = F1(x1) + · · ·+ Fn(xn),(2)

where x1, . . . , xn ∈ Fp. In [5], Carlitz et. al. proved that given F1(X1), . . . , Fn(Xn)
polynomials over Fp of degree d1, . . . , dn, every element a ∈ Fp can be written as
a = F1(x1) + · · ·+ Fn(xn), provided that

n∑
i=1

[
p− 1

di

]
+ t > p,

where t is the number of Fi’s which are neither of degree p−1 nor of the form α(Xi−
β)

1
2 (p−1) + λ. In [3], Cochrane et. al. use estimates for exponential sums to prove

that (1) has at least one solution for every a ∈ Fp, whenever r1+· · ·+rγ(F,p) ≥ log p,
where the absolute value of the exponential sum corresponding to each ri is less than
or equal to p(1− ri). Note that these results are for polynomials over Fp. Recently
in [18], [9], they considered the Waring problem when F = F1 = · · · = Fn and F is
a Dickson polynomial over finite fields. Finally, in this paper we apply our results
about divisibility of exponential sums to obtain estimates for the generalization of
the Waring problem given in (1).

2. Preliminaries

Let F (X1, · · · , Xn) =
∑N
i=1 aiX

e1i
1 · · ·Xeni

n be a polynomial in the variables
X1, · · · , Xn over Fp. In this paper we consider p to be odd.

Let Qp be the p-adic field with ring of integers Zp, and let K be the extension

over Qp obtained by adjoining a primitive (p − 1)th root of unity in Qp, the alge-
braic closure of Qp. The residue class field is isomorphic to Fp. Let T denote the
Teichmüller representatives of Fp in K. Denote by ξ a primitive pth root of unity in

Qp. Define θ = 1−ξ and denote by vθ the valuation over θ. Note that vθ(p) = p−1

and vp(x) = vθ(x)
p−1 .

Let ψ : Fp → Q(ξ) be a nontrivial additive character. The exponential sum
associated to F is defined as follows:

S(F ) =
∑

x1,...,xn∈Fp

ψ(F (x1, . . . , xn)).
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Note that if we are able to compute the exact p-divisibility of the exponential
sum S(F ), then we know that S(F ) will not be divisible by some arbitrary large
power of p and therefore S(F ) 6= 0. The next theorem ([16]) gives a bound for the
valuation of an exponential sum with respect to θ.

Theorem 2.1. Let F (X1, . . . , Xn) =
∑N
i=1 aiX

e1i
1 · · ·Xeni

n , ai 6= 0. If S(F ) is
the exponential sum

(3) S(F ) =
∑

x1,··· ,xn∈Fp

ψ(F (x1, · · · , xn)),

then vθ(S(F )) ≥ L, where

L = min
(j1,...,jN )

{
N∑
i=1

ji + (p− 1)s | 0 ≤ ji < p

}
,

for (j1, . . . , jN ) a solution to the system

(4)


e11j1 + e12j2 + . . .+ e1N jN ≡ 0 mod p− 1
...

...

en1j1 + en2j2 + . . .+ enN jN ≡ 0 mod p− 1,

and s the number of expressions in (4) that are equal to zero.

Following the notation of [16], we expand the exponential sum S(F ):

(5) S(F ) =

p−1∑
j1=0

· · ·
p−1∑
jN=0

[
N∏
i=1

c(ji)

][∑
t∈T n

tj1e1+···+jNeN

][
N∏
i=1

a′
ji
i

]
,

where a′i’s are the Teichmüller representatives of the coefficients ai of F , and c(ji)
is defined in Lemma 2.2 below. Each solution (j1, · · · , jN ) to (4) is associated to a
term T in the above sum with

vθ(T ) = vθ

([
N∏
i=1

c(ji)

][∑
t

tj1e1+···+jNeN

][
N∏
i=1

a′
ji
i

])

(6) =

N∑
i=1

ji + (p− 1)s,

where s is the number of expressions in (4) that are equal to zero for the vector
(j1, · · · , jN ).

Sometimes one does not have equality on the valuation of S(F ) because it could
happen that there is more than one solution (j1, . . . , jN ) that gives the minimum

value for
∑N
i=1 ji and, for example, when the associated terms are similar some could

cancel and produce higher powers of θ dividing the exponential. However, there
are situations on which one is able to compute the exact divisibility. The situation
that we considered in this paper is when there is a unique solution (j1, . . . , jN ) in
(4). In this case the exact divisibility of S(F ) is obtained. This was used in [6],
[7], [19] to obtain that vθ(S(F )) = L for infinite families of polynomials.

From now on we call any solution (j1, · · · , jN ) of (4) that has vθ(T ) of minimum
value a minimal solution. In the cases considered in this paper we have s = 0. We
use the following lemma and Stickelberger’s Theorem to compute exact divisibility.
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Lemma 2.2 ([16]). There is a unique polynomial C(X) =
∑p−1
j=0 c(j)X

j ∈
K(ξ)[X] of degree p− 1 such that

C(t) = ξtrK/Qp (t), for all t ∈ T .
Moreover, the coefficients of C(X) satisfy

c(0) = 1

(p− 1)c(p− 1) = −p
(p− 1)c(j) = g(j) for 0 < j < p− 1,

where g(j) is the Gauss sum,

g(j) =
∑
t∈T ∗

t−jξtrK/Qp (t).

Theorem 2.3 (Stickelberger [17]). For 0 < j < p− 1,

(8)
g(j)j!

θj
≡ −1 mod θ.

The non-zero elements in the Teichmüller set T satisfy the following relation:

Lemma 2.4. Suppose that e1, e2, · · · , en are non-negative integers such that r
of them are non-zero and let e = (e1, · · · , en). Then,

(9)
∑
t∈T n

te =

{
(p− 1)rpn−r if all ei are divisible by p− 1

0 otherwise.

Next we state a theorem about permutation polynomials. This theorem is going
to be used in the next section.

Theorem 2.5 ( [13]). A polynomial F (X) over Fp in one variable over Fp is
a permutation polynomial of Fp if and only if S(F ) =

∑
x∈Fp ψ(F (x)) = 0 for all

nontrivial additive character of Fp.

Theorem 2.5 implies that if S(F ) 6= 0 for some nontrivial additive character,
then F is not a permutation polynomial of Fp.

3. Exact Divisibility of Exponential Sums in One Variable over Fp
In this section we compute the p-divisibility of some exponential sums in one

variable over Fp. We apply our results about exact divisibility of exponential sums
to solutions of equations. Let F (X) be a polynomial over Fp, where p is an odd
prime. If F (X) = a1X

d1 + a2X
d2 + · · ·+ arX

dr , we need to compute

L = min{j1 + j2 + · · ·+ jr}.
for any 0 ≤ j1, j2, . . . , jr ≤ p− 1 satisfying

(10) d1j1 + d2j2 + · · ·+ drjr ≡ 0 mod p− 1

and prove this minimum is unique to conclude vθ(S(F )) = L. In particular this
implies that S(a1X

d1 + · · ·+ arX
dr ) 6= 0 and F (X) = a1X

d + a2X
d2 + · · ·+ arX

dr

is not a permutation polynomial of Fp. We assume through the paper that p− 1 >
d1 > d2 > · · · > dr ≥ 1 and a1 6= 0. It is known that if d1 divides p − 1, then

νθ(S(F )) =
p− 1

d1
.
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We start our study with exponential sums associated to F (X) = aXd+1 + bXd,
where ab 6= 0.

Theorem 3.1. Let d be a positive integer greater than 1. Let k be the smallest
positive integer such that c(p− 1)/(d+ 1) and c(p− 1)/d are not integers for c > 0
and [c(p− 1)/(d+ 1)] = [c(p− 1)/d], for c < k.

• Then

νθ(S(aXd+1 + bXd)) = dk(p− 1)

d+ 1
e,

if k(p−1)/(d+1) and k(p−1)/d are not integers and [k(p−1)/(d+1)] 6=
[k(p− 1)/d].

• If only one of k(p− 1)/(d+ 1) or k(p− 1)/d is an integer, then the value
of νθ(S(aXd+1 + bXd)) is such integer.

• If k(p− 1)/(d+ 1) and k(p− 1)/d are integers, then νθ(S(aXd+1 + bXd))
is the minimum of such integers.

Proof. Let j1, j2 be integers, 0 ≤ j1, j2 ≤ p− 2, such that

j1(d+ 1) + j2d = c(p− 1)

for some integer c ≥ 0. We rewrite this equation as Sd + j1 = c(p − 1), where
S = j1 + j2. Let m > 0 denote the smallest sum j1 + j2. Notice that if j′1, j

′
2

is another solution of the modular equation associated to aXd+1 + bXd and S =
j1 + j2 = j′1 + j′2, then j1 − j′1 = (c− c′)(p− 1) so j1 = j′1 and j2 = j′2. Thus, there
exists a unique pair j1, j2 such that m = j1 + j2. Assume first that j1 6= 0 6= j2.
From Sd < Sd+ j2 = c(p− 1) < Sd+ S we get

c(p− 1)

d+ 1
< S <

c(p− 1)

d

Let k be the smallest integer such that c(p−1)/(d+1) and c(p−1)/d are not integers
(for c > 0) and [c(p− 1)/(d + 1)] = [c(p− 1)/d] for 0 ≤ c < k. If k(p− 1)/(d + 1)
and k(p− 1)/d are not integers and [k(p− 1)/(d+ 1)] 6= [k(p− 1)/d], then clearly
m = [k(p − 1)/(d + 1)] + 1. If either k(p − 1)/(d + 1) or k(p − 1)/d is an integer
then m is that integer value. �

Example 3.2. Two examples:

• If d = 51 and p = 757, we have νθ(S(aX52 + bX51)) = 44 since k = 3.
• If d = 31 and p = 61, we have we have νθ(S(aX32 + bX31)) = 15. Note

that c(p − 1)/32 and c(p − 1)/31 are not integers for c ≤ 7. In this
case [c(p− 1)/32] = [c(p− 1)/31] for c ≤ 8 but 8(p − 1)/32 = 15 is an
integer. The exact 61-divisibility of the number of solutions of F (X1) +
· · ·+ F (X4m) = a is 61m, for a ∈ F61, where F (X) = aX32 + bX31.

Corollary 3.3. With notation Theorem 3.1, we have

S(aXd+1 + bXd) 6= 0.

Corollary 3.4. Suppose that d > 1 is positive integer dividing p− 1. Then

νθ
(
S(aXd2 + bXd+1)

){ min{p−1
d+1 ,

p−1

d(d, p−1
d )
} if d+ 1 | p− 1

p−1

d(d, p−1
d )

otherwise
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Proof. If d 2 divides p−1, then νθ
(
S(aXd2 + bXd+1)

)
=
p− 1

d 2
. Suppose that

d2 6 | p− 1. The modular equation associated to the exponential sum is d 2j1 + (d+
1)j2 ≡ 0 mod p − 1. Let j′1 = dj1 mod p − 1. We obtain the following modular
equation dj′1 + (d + 1)j2 ≡ 0 mod p − 1. The minimal solution of this modular
equation is min{p−1

d+1 ,
p−1
d } by Theorem 3.1. �

Example 3.5. If d = 3 and p = 61, we have we have νθ(S(aX9 + bX4)) = 15
since min{p−1

d+1 ,
p−1

d(d, p−1
d )
} = min{15, 20} = 15.

Consider polynomials of degree p− 2 over Fp. In [12], Koyangin confirmed the
common belief that almost all permutation polynomials have degree q − 2. The
following theorem provides families of polynomials that cannot be permutation
polynomials of Fp.

Theorem 3.6. Let p−2 = d1 > d2 > · · · > dr = 2 be positive integers satisfying
d2 < bp−1

3 c. Then

vθ(S(a1X
p−2 + a2X

d2 + · · ·+ arX
2)) = 3,

where a1ar 6= 0. In particular S(F ) 6= 0 and F is not a permutation polynomial of
Fp.

Proof. Note that we do not have a minimal solution of (p−2)j1 + · · ·+ 2jr ≡
0 mod p−1 with value ≤ 2. We are going to prove that the unique minimal solution
of (p − 2)j1 + · · · + 2jr ≡ 0 mod p − 1 is j1 = 2, jr = 1 and j2 = · · · = jr−1 = 0.
Note that di1 + di2 + di3 < p − 1 for i1, i2, i3 > 1, p − 2 + 2di1 6≡ 0 mod p − 1 and
2(p− 2) + di1 6≡ 0 mod p− 1 except when di1 = 2. This completes the proof. �

Now we apply Theorem 3.8 to the Waring problem over Fp.

Corollary 3.7. Let p− 2 = d1 > d2 > · · · > · · · > dr−1 > dr = 2 be positive
integers satisfying d2 < bp−1

3 c and F (X) = a1X
d1 + a2X

d2 + · · · + · · · + arX
dr .

Then F (X1) + · · · + F (Xs) = a is solvable for any a ∈ Fp whenever s ≥ p−1
3 and

p ≡ 1 mod 3.

Proof. Let N be the number of solutions of the equation F (X1) + · · · +
F (Xs) = a over Fp. Using the identity N = 1

p

∑
x1,...,xs,y∈Fp ψ(y(F (x1) + · · · +

F (xs)− a)), we obtain the following system of modular equations:

(p− 2)j11 + d2j21 + · · ·+ dr−1jr−11 + 2jr1 ≡ 0 mod p− 1

... · · ·
(p− 2)j1s + d2j2s + · · ·+ dr−1jr−1s + 2jrs ≡ 0 mod p− 1

j11 + · · ·+ jrs + j ≡ 0 mod p− 1

The first s-modular equations have an unique minimal solution: j11 = · · · = j1s =
2, jr1 = · · · = jrs = 1, the other ji’s equal to zero. Taking s = p−1

3 , we obtain a
minimal solution of the modular system. Therefore p does not divide the number of
solutions of F (X1) + · · ·+ F (Xs) = a. Hence, F (X1) + · · ·+ F (Xs) = a is solvable
over Fp. �

The following theorem gives a condition for a polynomial not to be a per-
mutation polynomial of Fp, where the exponents of the polynomial satisfy some
conditions.
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Theorem 3.8. Let p − 2 ≥ d1 > d2 > · · · > dr−1 > dr ≥ 1. If at least one of
the following conditions happen di1 + di2 = di3 + di4 = · · · = dil−1

+ dil = p− 1 for

some l or dm = p−1
2 , then

vθ
(
S(a1X

p−2+a2X
d2+· · ·+ar−1X

dr−1+arX
dr )
) = 2 2(ai1ai2 + · · ·+ ail−1

ail)+
a2
m 6≡ 0 mod p

> 2.

In particular, S(F ) 6= 0 and F (X) = a1X
p−2+a2X

d1 +· · ·+ar−1X
dr−1 +arX is not

a permutation polynomial of Fp whenever 2(ai1ai2 + · · ·+ ail−1
ail) + a2

m 6≡ 0 mod p.

Proof. The hypothesis in Theorem 3.8 implies that the minimal solutions of
the modular equation d1j1 + d2j2 + · · · + drjr ≡ 0 mod p − 1 are of the following
two types:

I. jik = jik+1
= 1 and the rest of the ji’s equal to zero

II. jm = 2 and the rest of the ji’s equal to zero.

The minimal solution jik = jik+1
= 1 and the rest of the ji’s equal to zero corre-

sponds to dik , dik+1
satisfying dik + dik+1

= p − 1. The minimal solution jm = 2

and the rest of the ji’s equal to zero corresponds to dm = p−1
2 . The contribution

of a minimal solution of type I to the divisibility of S(F )
θ2 is

(p− 1)aikaik+1
c(1)2

θ2
≡

(p− 1)aikaik+1
g(1)2

(p− 1)2θ2
mod θ

≡
aikaik+1

(p− 1)

(
g(1)

θ

)2

≡
aikaik+1

(p− 1)
mod θ.

The contribution of a minimal solution of type II to the divisibility of S(F )
θ2 is

(p− 1)a2
mc(2)

θ2
≡ (p− 1)a2

mg(2)

(p− 1)θ2
mod θ

≡ a2
m

2

(
g(2) · 2!

θ2

)
≡ −a

2
m

2
mod θ.

The total contribution of all the minimal solutions to S(F )
θ2 is

1

p− 1
(ai1ai2 + · · ·+ ail−1

ail)−
a2
m

2
.

Note that 1
p−1 (ai1ai2 + · · ·+ail−1

ail)−
a2m
2 is a p-adic integer, hence if 1

p−1 (ai1ai2 +

· · · + ail−1
ail) −

a2m
2 ≡ 0 mod θ, then 1

p−1 (ai1ai2 + · · · + ail−1
ail) −

a2m
2 ≡ 0 mod p.

From this our result follows. �

Now we state several corollaries.

Corollary 3.9. Let p− 2 ≥ d1 > d2 > · · · > dr−1 > dr ≥ 1, and di 6= p−1
2 for

any i. Then

vθ(S(a1X
d1 + a2X

d2 + · · ·+ ar−1X
dr−1 + arX

dr )) = 2,

whenever l = 2. In particular, S(F ) 6= 0 and F (X) is not a permutation polynomial
of Fp.

Proof. Suppose (di1 , di2) is the only order pair such that di1 + di2 = p − 1.
In this case we have ai1ai2 6≡ 0 mod p. �
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In the next corollary we apply Theorem 3.8 to the Waring problem over Fp.

Corollary 3.10. Let p − 2 ≥ d1 > d2 > · · · > dr−1 > dr ≥ 1, and di 6= p−1
2

for any i and F (X) = a1X
p−2 + · · · + arX

dr . Then F (X1) + · · · + F (Xs) = a is
solvable for any a ∈ Fp whenever s ≥ p−1

2 , and l = 2.

Proof. LetN be number the solutions of the equation F (X1)+· · ·+F (Xs) = a
over Fp. Then the following system of modular equations is associated to N :

d1j11 + d2j21 + · · ·+ dr−1jr−11 + drjr1 ≡ 0 mod p− 1

... · · ·
d1j1s + d2j2s + · · ·+ dr−1jr−1s + drjrs ≡ 0 mod p− 1.

j11 + · · ·+ jrs + j ≡ 0 mod p− 1

This system has a unique minimal solution since l = 2. Therefore p does not divide
the number of solutions of F (X1) + · · ·+ F (Xs) = a. �

Remark 1. Theorem 3.8 implies that p does not divide the number of solutions
of the following system of polynomial equations:

a1X
d
1 + · · ·+ ap−1X

d
p−1 = a

b1X
p−1−d
1 + · · ·+ bp−1X

p−1−d
p−1 = b.

Hence this system is solvable for any (a, b) ∈ F2
p .

Corollary 3.11. Let p− 2 = d1 > d2 > · · · > dm = p−1
2 > · · · > dr−1 > dr =

1, di + dj 6= p− 1 for i 6= j and 1 < i, j < r. Then

vθ
(
S(a1X

d1 + · · ·+ ar−1X
dr−1 + arX)

){ = 2 if 2a1ar + a2
m 6≡ 0 mod p

> 2 otherwise.
,

where a1amar 6= 0. In particular, F (X) = a1X
p−2 +a1X

d1 + · · ·+amX
p−1
2 + · · ·+

ar−1X
dr−1 + arX is not a permutation polynomial of Fp whenever 2a1ar + a2

l 6≡
0 mod p.

Proof. In this case we have a1ar
(p−1) −

a2m
2 ≡ 0 mod p. From this our result

follows. �

Corollary 3.12. Let p− 1 > d1 > d2 > · · · dm = p−1
2 > · · · > dr−1 > dr ≥ 1,

and di + dj 6= p− 1 for any i, j with i 6= j. Then

vθ
(
S(a1X

d1 + a2X
d2 + · · ·+ arX

dr )
)

= 2,

whenever am 6= 0. In particular, S(F ) 6= 0 and F (X) is not a permutation polyno-
mial of Fp.

Proof. The proof is similar to the proof of Corollary 3.11. �

As in Corollary 3.10, we apply Theorem 3.8 to the Waring problem over Fp.

Corollary 3.13. Let p− 1 > d1 > d2 > · · · > p−1
2 = dm > · · · > dr−1 > dr ≥

1, and di + dj 6= p− 1 for any i, j with i 6= j and F (X) = a1X
d1 + a2X

d2 + · · ·+
amX

p−1
2 + · · ·+ arX

dr . Then F (X1) + · · ·+ F (Xs) = a is solvable for any a ∈ Fp
whenever s ≥ p−1

2 and am 6= 0.

Example 3.14. Let F (X) = Xp−2 +Xd +X be a polynomial over Fp.
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• γ(F, 11) = 2 for 2 ≤ d ≤ 8, d 6= 5 and γ(F, 11) = 3 for d = 5.
• γ(F, 13) = 2 for 2 ≤ d ≤ 10, d 6= 6 and γ(F, 11) = 3 for d = 6.
• γ(F, 17) = 2 for 2 ≤ d ≤ 14.
• γ(F, 19) = 2 for 2 ≤ d ≤ 16.

Now, we compute the exact divisibility of exponential sums of type S(aXd1 +
bXd2), where d1 − d2 divides p− 1.

Theorem 3.15. Let d1, d2 be positive integers satisfying d1 > d2 > 0 and
d1 6 |(p−1). Let F (X) = aXd1+bXd2(ab 6= 0) be a binomial over Fp and (d1, d2) = 1.
If d1 − d2 | p− 1

(1) then νθ(S(F )) ≥ d1 − d2.

(2) and p−1
d1−d2 > d1 − d2 − d1 ≥ 0, then νθ(S(F )) = d1 − d2 where d1 is the

smallest nonnegative integer congruent to d1 mod p−1
d1−d2 . In this situation,

S(F ) 6= 0 and F does not permute Fp.

Proof. We can write the modular equation associated to S(F ) as follows
(d1−d2)j1+d2(j1+j2) ≡ 0 mod p−1. Then d2(j1+j2) ≡ 0 mod (d1−d2). We obtain
j1 + j2 ≡ 0 mod (d1 − d2). Hence a minimal solution of d1j1 + d2j2 ≡ 0 mod p− 1
is ≥ d1 − d2. This completes the proof of the first part of Theorem 3.15.

Let j2 = d1 ≡ d1 mod p−1
d1−d2 , and j1 = d1−d2−d1. We are going to prove that

(j1, j2) is a minimal solution of d1j1 + d2j2 ≡ 0 mod p− 1.

d1j1 + d2j2 = d1(d1 − d2 − d1) + d2d1

d1(d1 − d2) + (d2 − d1)d1 = (d1 − d2)(d1 − d1) ≡ 0 mod p− 1

Now we are going to prove that this solution is unique. Suppose that (j1, j2) is
another minimal solution, i.e., j1 + j2 = d1− d2. We have (d1− d2)(d1− d2− d1) +
d2(d1 − d2) = c1(p − 1), (d1 − d2)j1 + d2(d1 − d2) = c2(p − 1). If c1 = c2 then
j1 = d1 − d2 − d1 and it is unique. If c1 6= c2, then j1 = d1 − d2 + d1 + ( p−1

d1−d2 )l. If

l ≥ 1, then j1 ≥ d1 − d2 − d1 + p−1
d1−d2 . Hence

d1 − d2 = j1 + j2 ≥ d1 − d2 − d1 +
p− 1

d1 − d2
↔ d1 ≥

p− 1

d1 − d2
.

This is a contradiction. If l < 0, then j1 ≤ d1−d2−d1− p−1
d1−d2 . This a contradiction

since p−1
d1−d2 > d1 − d2 − d1. Hence l = 0.

�

In [14], Masuda-Zieve proved the following results about permutation binomi-
als: Let d1 > d2 be positive integers.

• If F (X) = Xd1 +aXd2 permutes Fp, then s >
√
p−1, where s = gcd(d1−

d2, p− 1), and a ∈ F∗p .

• If F (X) = Xd1 + aXd2 permutes Fp, then p − 1 ≤ (d1 − 1) ·max{d2, s},
where s = gcd(d1 − d2, p− 1), and a ∈ F∗p .

Example 3.16. Various examples:

• Consider the polynomial F (X) = X29 +aX9 over F61. F is a permutation
polynomial of F61 for a ∈ {2, 3, 6, 17, 19, 26, 33, 36, 38, 39, 41, 45}.
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• Consider the polynomial F (X) = X31+aX over F2311. Masuda-Zieve’s re-

sult implies that F does not permute F2311 since 30 <
√

2311−1. Theorem
3.15 does not give any information about F since d1−d2−d1 = −1 < 0. In
this case the minimum is m = 90 and it is unique. Hence νθ(S(F )) = 90.

• Consider the polynomial F (x) = X17 +aX7 over F61. In this case we have
that 6 > 10 − 5 = 5 > 0. Therefore, Theorem 3.15 implies that F does
not permute F61. We have νθ(S(F )) = 10. Masuda-Zeive’s results do not

give any information since 10 >
√

61− 1 and p− 1 > 16× 10 = 160.
• Consider the polynomial F (X) = X151 + aX120 over F683. In this case we

have that 22 > 31− 27 = 4 > 0. Therefore, Theorem 3.15 implies that F
does not permute F683. We have νθ(S(F )) = 31. Masuda-Zieve’s results

do not give any information since 31 >
√

683− 1.

Remark 2. We cannot apply Theorem 3.15 to a polynomial F (X) = Xd1 +
aXd2 , when d1 − d2 does not divide p− 1, but it can be applied to the polynomial
F ′(X) = Xs+d2j + axd2 , where s = gcd(d1 − d2, p − 1), js ≡ s mod p − 1 and
gcd(j, p − 1) = 1. The modular equations associated to F and F ′ are equivalent.
Hence νθ(S(F )) = νθ(S(F ′)).

Example 3.17. Consider the polynomial F (X) = X41 + aX13 over F127. Note
that d1 − d2 = 28 does not divide 126. In this case F ′(X) = X79 + aX65. Note F ′

satisfies the hypothesis of Theorem 3.15, 9 > 14− 7 = 7 > 0. Therefore, Theorem
3.15 implies that νθ(S(F )) = 14 and F does not permute F127.

Now we apply Theorem 3.15 to the Waring Problem.

Corollary 3.18. With the notation and hypotheses of part 2 of Theorem 3.15.
Let F (X) = aXd1 + bXd2 be a polynomial over Fp. Then F (X1) + · · ·+F (Xs) = a

is solvable for any a ∈ Fp whenever s ≥ p−1
d1−d2 .

Example 3.19. Let d1 = 100, d2 = 9 and p = 5279. Applying Corollary 3.18,
the equation

∑s
i=1X

100
i +X9

i = a is solvable for s ≥ 58, a ∈ F5279.
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