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Abstract. In this paper we provide new families of balanced symmetric functions over any finite field. We

also generalize a conjecture of Cusick, Li, and Stǎnicǎ about the non-balancedness of elementary symmetric
Boolean functions to any finite field and prove part of our conjecture.

1. Introduction

A function is said to be balanced if its values are equally distributed. This is an important property
for functions that are used in cryptographic applications, so they are resistant to algebraic attacks. Much
research has been done on balanced Boolean functions and some of the ideas have been extended to charac-
teristic p > 2.

Symmetric functions are functions whose values remain the same when the entries of the inputs are
permuted. This presents an advantage in implementation complexity and also for systems with memory
constrains. In this paper we provide new families of balanced symmetric functions over finite fields of any
characteristic.

In 2008, Cusick, Li and Stǎnicǎ [10] presented a conjecture about the non-balancedness of elementary
symmetric Boolean functions that can be phrased as follows:

Conjecture 1.1 (CLS, [10]). The only nonlinear balanced elementary symmetric Boolean functions are those
with degree k = 2l and n = 2l+1D − 1 variables, where l,D are positive integers.

Conjecture 1.1 essentially states that there are very few balanced elementary Boolean functions and gives
precise formulas for the parameters n, k of these balanced functions. In [10, 9, 12, 14, 5], several cases of this
conjecture are tackled. All the advances in proving the conjecture up to 2013 can be found in [14]. In 2015,
many of the boundary cases of Cusick, Li and Stǎnicǎ’s conjecture were shown to be true in [4].

Some authors have been studying the balancedness of symmetric functions over finite fields of odd char-
acteristic. In [10, 13, 11] lower bounds on the number of n-variable balanced symmetric functions over Fp
were presented, but no explicit new families of balanced symmetric functions were given. In 2015, Arce-
Nazario, Castro and Rubio [1, 2] generalized the conjecture of Cusick, Li and Stǎnicǎ on Boolean elementary
symmetric functions to elementary symmetric functions over Fp.

Conjecture 1.2 (ACR, [2]). The only nonlinear balanced elementary symmetric functions over Fp are those
with degree k = pl and n = plD − 1 variables, where l,D ∈ N, D 6≡ 1 (mod p).

After getting partial results on this conjecture, we realized that it can be generalized to any finite field:

Conjecture 1.3. The only nonlinear balanced elementary symmetric Boolean functions over Fq, q = pf are
those with degree k = pl and n = plD − 1 variables, where l,D ∈ N, D 6≡ 1 (mod p).

Conjecture 1.3 is an extension of Conjecture 1.1 because for q = p = 2, D 6≡ 1 (mod 2) implies that
n = 2l+1D′ − 1, where D′ = D

2 is a positive integer, and hence we obtain the original conjecture. Note that
our conjecture only depends on the characteristic of the field, not on the degree of the extension. Hence,
if Conjecture 1.3 were true, for a fixed p, the number nonlinear balanced elementary symmetric Boolean
functions over is the same regardless of the size of the field.

We used computers to verify Conjecture 1.3 for the following cases:
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• q = k = 3, n ≤ 85, 000;
• q = 3, k = 9, n ≤ 10, 000;
• q = 3, 2 ≤ k ≤ 50, n ≤ 650;
• q = 4, k = 2, n ≤ 150, 000;
• q = 4, k = 4, n ≤ 50, 000;
• q = k = 5, n ≤ 3000;
• 3 ≤ p ≤ 11, 2 ≤ k ≤ 10, n ≤ 100.

In this paper we prove that the functions that are said to be balanced in Conjecture 1.3 are in fact
balanced. This provides new families of balanced symmetric functions for F2f , f 6= 1 and for any field of
characteristic p > 2. We also show how the covering method of [3, 8] can be used to find many examples of
specific families of non-balanced symmetric functions that confirm the conjecture.

2. Preliminaries

From now on, let p be a prime, q = pf , Fq be the finite field with q elements, and F nq = {(x1, . . . , xn) |xi ∈ Fq, i = 1, . . . , n}.
Let x = (x1, . . . , xn). We use capital letters Xi to represent variables in polynomials or functions, and low-
ercase letters xi to represent the elements of a set.

Definition 2.1. A function F : Fnq → Fq is balanced if its values are uniformly distributed. This is, if F

takes each value of Fq exactly qn−1 times.

The n-variable elementary symmetric function of degree k is

σn,k = σk (X1, X2, . . . , Xn) =
∑

1≤i1<i2<...<ik≤n

Xi1 ·Xi2 · · ·Xik .

To prove the balancedness of the functions prescribed by our conjecture we use the base p expansion of
non-negative integers and Lucas’ theorem.

The base p expansion of a non-negative integer k is k = krp
r+ · · ·+k2p

2 +k1p+k0 = (krkr−1 · · · k1k0)p,

where 0 ≤ ki < p. The p-weight of k, sp(k), is defined as the sum of the digits in the base p expansion of k:
sp(k) = k0 + k1 + · · ·+ kr. The exact p-divisibility of a non-zero integer k, vp(k), is the exponent on the
highest power of p dividing k. It is known that

(2.1) νp(k!) =
k − sp(k)

p− 1
.

Theorem 2.2 (Lucas). Let p be a prime, and let n be a positive integer with n = (nrnr−1 · · ·n0)p. Let k be

a positive integer less than n. If k = (krkr−1 · · · k0)p, then(
n

k

)
≡

r∏
j=0

(
nj
kj

)
(mod p),

where
(

0
0

)
= 1 and

(
nj

kj

)
= 0 if nj < kj.

The main tool that we use to prove the non-balancedness of some families of symmetric functions is
exponential sums.

2.1. Exact p-divisibility of exponential sums to prove non-balancedness. Let ζ be a primitive p-th
root of unity over Q, and Tr : Fq −→ Fp be the trace map. The exponential sum associated to a function
F : F nq −→ Fq is

S(F ) =
∑
x∈F n

q

ζTr(F (x)).

If F is balanced, then F (x) = b ∈ Fq for qn−1 elements x ∈ F nq and S(F ) = qn−1
∑
b∈Fq ζ

Tr(b) = 0.

If S(F ) has exact p-divisibility νpS(F ) and S(F ) 6= 0. Hence, if we can compute the exact p-divisibility
of S(F ), we are proving that F is not balanced.

The covering method for polynomials over the prime field Fp was introduced in [3, 8] as an elementary
method to compute exact p-divisibility of exponential sums. The elementary statements obtained in these
papers have been extended in [7] to any field Fq, but their proofs are not elementary. We now summarize
the concepts and results that are needed for the proofs in Section 4.
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Definition 2.3. Let F (X) = a1F1 + a2F2 + · · · + aNFN . A set C = {F v11 , . . . , F vNN } of powers of the
monomials in F is a (q − 1)-covering of F if, in the product F v11 · · ·F

vN
N , the exponent of each variable is

a positive multiple of q − 1.

The size of the covering C is
∑N
i=1 sp (vi). The covering is minimal if for any other (q − 1)-covering

C′ =
{
F
v′1
1 , . . . , F

v′N
N

}
of F ,

∑N
i=1 sp (v′i) ≥

∑N
i=1 sp (vi). We denote by κq−1(F ) the size of a minimal

(q − 1)-covering of F .
The next lemma is a generalization of Lemma 2.2 in [8]:

Lemma 2.4. Suppose that each minimal (q − 1)-covering Ci = {F vi11 , . . . , F viNN } of a polynomial F =
a1F1 + a2F2 + · · ·+ aNFN is such that each monomial has at least two variables that are not included in any
other monomial of Ci. Let C1, . . . , Cc be all the minimal (q−1)-coverings of F . If ri is the number of vij 6= 0
for j = 1, . . . , N , then

νp (S(F )) is

{
= κq−1(F )/(p− 1) if

∑c
i=1

(−1)ria
vi1
1 ···aviNN

ρ(vi1)···ρ(viN ) 6≡ 0 mod p

> κq−1(F )/(p− 1) otherwise
,

where ρ(a) = a0!a1! · · · al! with a = a0 + a1p+ · · ·+ alp
l.

3. New families of balanced symmetric functions

In this section we provide new families of balanced symmetric functions for fields of any characteristic.
This includes extension fields of characteristic 2 and hence extends the results in [10]. We first prove that
all the functions that are said to be balanced in Conjecture 1.3 are in fact balanced.

Throughout this section, let k = pl and n = plD− 1, where l,D ∈ N and D 6≡ 1 (mod p). We begin with

a lemma regarding the number of terms
(
n
k

)
=
(
plD−1
pl

)
in σn,k. The lemma applies to any D ∈ N, but our

usage will be restricted to D 6≡ 1 (mod p).

Lemma 3.1. We have (
plD − 1

pl

)
≡ D − 1 (mod p).

Proof. Let D− 1 = a+ hp, where 0 ≤ a ≤ p− 1, h ∈ Z. Then, a ≡ D− 1 (mod p), and, by Lucas’ theorem,(
plD − 1

pl

)
=

(
hpl+1 + apl + (pl − 1)

pl

)
≡
(
a

1

)
≡
(
D − 1

1

)
(mod p).

�

We need another preparatory lemma.

Lemma 3.2. For 1 ≤ r ≤ k − 1, we have
(
n−r
k−r
)
≡ 0 (mod p).

Proof. Since D > 1, we can write D = D′ + 1 for some D′ ∈ N. Then,(
n− r
k − r

)
=

(
plD′ +

(
pl − r − 1

)
pl − r

)
,

and, to apply Lucas’ theorem, we need to compare the base p expansion of pl − r − 1 and pl − r.
Let pl−r = bl−1p

l−1 + bl−2p
l−2 + · · ·+ bip

i, where bi 6= 0. If i = 0, then, pl−r−1 = bl−1p
l−1 + bl−2p

l−2 +
· · ·+ b0− 1. If i > 0, then, pl− r− 1 = bl−1p

l−1 + bl−2p
l−2 + · · ·+ (bi − 1) pi + ai−1p

i−1 + · · ·+ a1p+ (p− 1).
In any case, there is a digit in the base p expansion of pl − r − 1 that it is smaller than the corresponding
digit in the base p expansion of pl − r. Therefore,

(
n−r
k−r
)
≡ 0 (mod p). �

The key to prove that the functions in Conjecture 1.3 are balanced is Lemma 3.5 below, that relates
σn,k (X1 + α, . . . ,Xn + α), α ∈ Fq, to σn,k (X1, X2, . . . , Xn). To prove Lemma 3.5 we need Corollary 3.4
that follows from the following known result about elementary symmetric functions.

Lemma 3.3 (Vieta). Let λ ∈ F ∗q . Then,

m∏
j=1

(λ−Xj) = λm − σm,1λm−1 + σm,2λ
m−2 + · · ·+ (−1)mσm,m.
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Writing
∏m
j=1 (λ−Xj) =

∑m
j=0 (−1)

j
λm−jσm,j , and letting

∏m
j=1 (Xj + α) = −

∏m
j=1 (−α−Xj), we get

Corollary 3.4. Let α ∈ Fq. Then,

m∏
j=1

(Xj + α) =

m∑
j=0

(−1)m+1αm−jσm,j .

Lemma 3.5. Let α ∈ Fq. Then,

σk (X1 + α, . . . ,Xn + α) ≡ σk (X1, . . . , Xn) + (−1)p
l+1(D − 1)αk (mod p).

Proof. Expanding

σk (X1 + α, . . . ,Xn + α) =
∑

1≤i1<···<ik≤n

(Xi1 + α) (Xi2 + α) · · · (Xik + α)

=

k∏
j=1

(
X1ij + α

)
+

k∏
j=1

(
X2ij + α

)
+ · · ·+

k∏
j=1

(
X(n

k)ij + α
)
,(3.1)

where Xhij is the variable Xij in the h monomial of the sum in (3.1). Hence,

(3.2) σk (X1 + α, . . . ,Xn + α) =

k∑
j=0

(−1)
pl+1

αk−jσj (X1i1 , . . . , X1ik) + · · ·

+

k∑
j=0

(−1)
pl+1

αk−jσj

(
X(n

k)i1 , . . . , X(n
k)ik

)
.

For j = 0 we get a term αk in each of the
(
n
k

)
terms of (3.2); which adds to

(
n
k

)
αk. Also, for j = k, we get a

term σk (Xhi1 , . . . , Xhik) for each 1 ≤ h ≤
(
n
k

)
; which adds to σn,k. Therefore, by Lemma 3.1,

σk (X1 + α, . . . ,Xn + α) = σn,k + (−1)p
l+1

(
n

k

)
αk +H

≡ σn,k + (−1)p
l+1 (D − 1)αk +H (mod p),

where H are the terms in (3.2) with 0 < j < k. We now see that H ≡ 0 (mod p).
First note that Xi1 · · ·Xir is a monomial in H if and only if it is a term in σr (Xhi1 , . . . , Xhik) for some

1 ≤ h ≤
(
n
k

)
and r < k. This happens if and only if Xi1 · · ·Xir divides a term of σn,k. The number of times

that the term Xi1 · · ·Xir appears in H is the number of terms in σn,k that are divisible by Xi1 · · ·Xir . This
is the same as the number of ways to choose k − r variables from n − r variables to obtain monomials of
degree k with no repeated variables:

(
n−r
k−r
)
. This implies that the coefficient of each monomial in H is a

multiple of
(
n−r
k−r
)
, and, by Lemma 3.2, H ≡ 0 (mod p). �

Lemma 3.6. Let α, β ∈ Fq. If (a1 + α, . . . , an + α) 6= (a1 + β, . . . , an + β), then σk (a1 + α, . . . , an + α) 6=
σk (a1 + β, . . . , an + β).

Proof. Suppose σk (a1 + α, . . . , an + α) = σk (a1 + β, . . . , an + β). Then, by Lemma 3.5,

(−1)p
l+1(D − 1)αk ≡ (−1)p

l+1(D − 1)βk (mod p).

Since, p - (D − 1) and k = pl, we have that p | (α− β)
pl

. Therefore, α = β and this is a contradiction. �

The next theorem proves that the functions predicted in Conjecture 1.3 to be balanced are in fact balanced.
The theorem provides new families of balanced elementary symmetric functions for F2f , f 6= 1 and for any
field of characteristic p > 2.

Theorem 3.7. Let k = pl and n = plD − 1, where D 6≡ 1 (mod p). Then, the function σn,k : Fnq −→ Fq is
balanced.
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Proof. Let (a11, a12, . . . , a1n) ∈ F nq and A1 := {(a11 + α, a12 + α, . . . , a1n + α) | α ∈ Fq} ⊆ F nq . Then, by
Lemma 3.5,

σk (a11 + α, . . . , a1n + α) ≡ σn,k (a11, . . . , a1n) + (−1)p
l+1 (D − 1)αk (mod p).

By Lemma 3.6 all σk (a11 + α, . . . , a1n + α) are different for each α ∈ Fq. This is,

V1 := {σk (a11 + α, . . . , a1n + α) | α ∈ Fq} = Fq.

Now consider A2 := {(a21 + α, a22 + α, . . . , a2n + α) | α ∈ Fq} ⊆ F nq , where (a21, a22, . . . , a2n) 6∈ A1. Note
that A1 ∩A2 = ∅. Similarly,

V2 := {σk (a21 + α, . . . , a2n + α) | α ∈ Fq} = Fq.

Continuing this process until ∪iAi = F nq , we get qn−1 sets Vi,{
σk (a1, . . . , an) | (a1, . . . , an) ∈ F nq

}
= ∪q

n−1

i=1 Vi,

and each element of Fq appears qn−1 times as an image of σn,k. This implies that σn,k is balanced. �

The composition of the trace function with elementary symmetric functions provides more new families
of balanced symmetric functions for the cases covered by Theorem 3.7.

Corollary 3.8. Let k = pl and n = plD−1, where D 6≡ 1 (mod p). Then, the function Tr(σn,k) : Fnq −→ Fp
is balanced over Fp (each value of Fp is assumed pnf−1 times).

4. Families of non-balanced elementary symmetric functions

The covering method of Section 2.1 can be used to find many examples of specific families of non-balanced
elementary symmetric functions. In this section we present some of these examples.

Proposition 4.1. Let n = mk. Then,

νp (S(σn,k)) is

{
= fm msp(k) + sp(m) = sp(mk) +m,
≥ fm+ 1 otherwise.

Proof. It is easy to see that any set of the form

Ci =
{

(Xi11Xi12 . . . Xi1k)
q−1

, · · · , (Xim1Xim2 · · ·Ximk
)
q−1
}
,

where the Xij1Xij2 · · ·Xjik have disjoint support, form a minimal (q − 1)-covering of σn,k. Since q − 1 =

(p− 1)
(
1 + p+ · · ·+ pf−1

)
, we have sp(q − 1) = (p− 1)f , and κq−1(σn,k) = (p− 1)fm.

By Lemma 2.4, νp (S (σn,k)) = fm if and only if

c∑
i=1

(−1)m

(ρ(q − 1))
m ≡

c(−1)m

(ρ(q − 1))
m ≡

c(−1)m

((p− 1)!)
fm
≡ c(−1)f 6≡ 0 (mod p),

where c is the number of minimal (q − 1)-coverings. A simple counting argument shows that the number of
minimal coverings of σn,k is

(4.1) c =

(
n
k

)(
n−k
k

)(
n−2k
k

)
· · ·
(
k
k

)
m!

=
n!

(k!)mm!
.

Now, c(−1)f 6≡ 0 (mod p) if and only if νp

(
n!

(k!)mm!

)
= 0. Using (2.1),

νp

(
n!

(k!)mm!

)
=
msp(k) + sp(m)− sp(mk)−m

p− 1
,

and therefore νp (S(σn,k)) = fm if and only if msp(k) + sp(m)− sp(mk)−m = 0. �

Corollary 4.2. Let n = mk. Then σn,k is non-balanced over Fq if msp(k) + sp(m) = sp(mk) +m.

Example 4.3. Let n = mk. Then σn,k is non-balanced over Fp whenever k = ps,or n < p, or m < p and
msp(k) = sp(mk).

Proposition 4.4. Let n = mk + k − 1. If n < p, then σn,k is non-balanced over Fp.
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Proof. The proof is similar to the proof of Proposition 4.1. Just note that the minimal (q − 1)-coverings of
σn,k have the form

Ci =
{

(Xi11Xi12 . . . Xi1k)
q−1

, · · · , (Xim1
Xim2

· · ·Ximk
)
q−1

, (
Xi(m+1)1

Xi(m+1)2
· · ·Xi(m+1)k

)q−1
}
,

where the Xij1Xij2 · · ·Xjik have disjoint support and the number of minimal coverings is

c =
kmn!

2m! (k!)
m

(k − 1)!
.

Since n < p, we can prove that νp(c) = 0, and therefore νp (S(σn,k)) = f(m+1) and σn,k is not balanced. �

In similar ways, we can use the covering method to obtain many more families of unbalanced elementary
symmetric functions. For example, the function σn,n−1 is non-balanced over Fp, for p - n(n− 3), p odd.

Also, using the techniques involving Stickelberger’s theorem presented in [6] we can show that Propositions
4.1 and 4.4 are true for extensions of Fp.
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