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Abstract. In this article, we present a beautiful connection between Hadamard matrices and exponential

sums of quadratic symmetric polynomials over Galois fields. This connection appears when the recursive

nature of these sequences is analyzed. We calculate the spectrum for the Hadamard matrices that dominate
these recurrences. The eigenvalues depend on the Legendre symbol and the quadratic Gauss sum over finite

field extensions. In particular, these formulas allow us to calculate closed formulas for the exponential sums
over Galois field of quadratic symmetric polynomials. Finally, in the particular case of finite extensions of

the binary field, we show that the corresponding Hadamard matrix is a permutation away from a classical

construction of these matrices.

1. Introduction

Boolean functions are functions from the vector space Fn2 to F2 where F2 represents the binary field.
Applications of these beautiful combinatorial objects to computer science fields such as coding theory, cryp-
tography and information theory have made them a source of active research. Moreover, due to memory
restrictions of current technology efficient implementations of these functions is an area of special interest.
Efficient implementations, in the most general sense, is a very hard problem. However, some classes like the
class of symmetric Boolean functions and the class of rotation symmetric Boolean functions are excellent
candidates for efficient implementations. These functions are part of ongoing research.

In some applications related to cryptography it is important for Boolean functions to be balanced. A
balanced Boolean function is one for which the number of zeros and the number of ones are equal in its
truth table. Let F (X) be a Boolean function. List the elements of Fn2 in lexicographic order and label them
as x0 = (0, 0, · · · , 0), x1 = (0, 0, · · · , 1) and so on. The vector (F (x0), F (x1), · · · , F (x2n−1)) is called the
truth table of F . Balancedness of Boolean functions are usually studied from the point of view of Hamming
weights or from the point of view of exponential sums.

The Hamming weight of a Boolean function F , usually denoted by wt(F ), is the number of 1’s in the
truth table of F . Thus, a Boolean function F is balanced if and only if wt(F ) = 2n−1. Weights of symmetric
Boolean functions are somewhat understood. For instance, it is known since the 90’s that weights of sym-
metric Boolean functions are linear recursive with integer coefficients [4, 5]. On the other hand, the study of
weights of rotations symmetric Boolean functions is becoming an active area of research [3, 13, 15, 27, 28].
Similar to the symmetric case, it had been observed that weights of cubic rotation symmetric Boolean func-
tions are linear recursive [3, 13]. This prompted the question if the same holds for any degree. An answer
was given by Cusick [12] when he showed that weights of any rotation symmetric Boolean function satisfy
linear recurrences with integer coefficients.

The exponential sum of an n-variable Boolean function F (X) is defined as

(1.1) S(F ) =
∑
x∈Fn2

(−1)F (x).

Observe that a Boolean function F (X) is balanced if and only if S(F ) = 0. This point of view is also a very
active area of research. For some examples, please refer to [5–7, 9, 11, 19, 21, 24]. Moreover, both point of
views are equivalent and are linked by the equation

(1.2) wt(F ) =
2n − S(F )

2
.
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Cusick’s result about the linear recursive behavior of exponential sums of rotation symmetric Boolean
functions was generalized in [8] to the general setting of exponential sums over finite fields. Consider the
Galois field Fq where q = pr with p prime and r ≥ 1. The exponential sum over Fq of a function F : Fq → Fq
is given by

(1.3) SFq (F ) =
∑
x∈Fnq

e
2πi
p TrFq/Fp (F (x)),

where i =
√
−1 and TrFq/Fp represents the field trace from Fq to Fp. In [8] it was proved that exponential

sums over Galois fields of rotation symmetric polynomials are also linear recurrent with integer coefficients.
Therefore, the recursive nature of these sequences is not special to the binary field.

The authors of [8] also proved that exponential sums over Galois fields of symmetric polynomials are
linear recurrent with integer coefficients. Moreover, a beautiful relation between Hadamard matrices and
exponential sums of quadratic symmetric polynomials over the prime fields Fp (p prime) was found. This
link is the main focus of this article where we show that the same holds true when quadratic symmetric
polynomials are considered over any Galois fields Fq.

The connection to Hadamard matrices emerges when the problem of finding linear recurrences for these
exponential sums is considered. This sounds technical, but in reality, once the proper framework is estab-
lished, it is a very straight forward problem. In fact, the main idea to find such recurrences is to transform
the problem into a linear system and to compute an annihilator for the matrix associated to it. An annihi-
lator for a matrix A is simply a polynomial p(X) satisfied by A, i.e. a polynomial p(X) for which p(A) = 0.
The characteristic polynomial of A is such an example. We show that the matrices that dominates the
recurrences associated to quadratic symmetric polynomials over any Galois field are all Hadamard matrices.
Moreover, previous constructions of Hadamard matrices re-emerge when the equivalent class of the matrix
associated to quadratic symmetric polynomials is considered.

As just mentioned, in this article we show that the matrices that dominate the linear recursive nature
of exponential sums of quadratic symmetric polynomials over Fq are all Hadamard (regardless of q). In the
particular case when q is odd we compute the eigenvalues and eigenvectors for the corresponding Hadamard
matrices. These formulas depend on the Legendre symbol and quadratic Gauss sum over Fq. Moreover,
these formulas for the eigenvalues allow us to compute closed formulas for the corresponding exponential
sums.

This paper is divided as follows. Next section is a short survey of Hadamard matrices. This survey is
included for completeness purposes. The expert reader may skip it. Some preliminaries and examples that
expose the relation between Hadamard matrices and exponential sums of quadratic symmetric polynomials
are the subject of Section 3. In the fourth and final section we showed that the matrices related to the
recursions considered in this article are indeed Hadamard. We also compute the spectrum for these matrices
when q is odd and provide closed formulas for their corresponding exponential sums. These closed formulas
depend on the Legendre symbol and the quadratic Gauss sum. These behavior is in line with the classical
results in number theory where Gauss sums appear (naturally) in the general theory of exponential sums.
However, as far we know, this is a new result. Finally, in the particular case of finite extensions of the binary
field, we show that the corresponding Hadamard matrix is a permutation away from a classical construction
of these matrices.

2. Hadamard matrices: a short survey

Hadamard matrices, named after the great mathematician Jacques Hadamard, are fascinating combina-
torial objects with applications to many scientific areas. Some examples include statistics, modern commu-
nications systems, error-correcting codes and cryptography. In the particular case of error-correcting codes,
they are an important ingredient in the famous Reed-Muller code and Walsh-Hadamard code.

One of the most appealing aspects of Hadamard matrices is the simplicity of its formal definition: a square
matrix H of order n is a Hadamard matrix if all its entries are either 1 or −1 and it satisfies

(2.1) HHT = nIn,
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where In is the n× n identity matrix. Some simple examples of Hadamard matrices are

(2.2)
(

1
)
,

(
1 1
−1 1

)
,


1 1 1 1
−1 1 −1 1
−1 −1 1 1

1 −1 −1 1

 .

Up to equivalence, these are the three smallest examples. Two Hadamard matrices H and H ′ are said
to be equivalent if H ′ can be obtained from H by interchanging rows or columns, or by multiplying rows or
columns by −1. Up to equivalence, there is a unique Hadamard matrix of orders 1, 2, 4, 8, and 12. There are
5 inequivalent matrices of order 16. In contrast, there are millions (13,710,027 to be exact) of inequivalent
matrices of order 32 [18]. See sequence A007299 in [25].

There exist no n × n Hadamard matrices for n /∈ {1, 2, 4k | k ∈ N}. In fact, it has been conjectured that
a Hadamard matrix of order n exists if and only if n = 1, 2, 4k for k a natural number. This is known as
Hadamard’s Conjecture. It remains an open question, but it is widely believed to be true.

One of the earliest champions of Hadamard matrices (and perhaps, the first one) was James Joseph
Sylvester. In [29] (1867), Sylvester provided a construction of a Hadamard matrix of order 2r for every
non-negative integer r. Let H be a Hadamard matrix of order n. He noticed that the partition matrix

(2.3)

(
H H
−H H

)
is also Hadamard. Therefore, defining H1 = (1) and applying (2.3) repeatedly lead to the construction of
the Hadamard matrix

(2.4) H2r =

(
H2r−1 H2r−1

−H2r−1 H2r−1

)
.

In fact, the three examples in (2.2) are just H1, H2 and H4.
Sylvester’s construction can be written in terms of Kronecker products. If A and B are matrices, their

Kronecker product A⊗B is the matrix M constructed by replacing each entry Ai,j in A by Ai,jB. Therefore,
in terms of Kronecker products, Sylvester’s construction is

(2.5) H2r = H2 ⊗H2r−1 .

Sylvester’s construction has been generalized. Specifically, if Hn, Hm are Hadamard matrices of orders n
and m (resp.), then their Kronecker product Hn ⊗ Hm is an Hadamard matrix of order nm. See [26] for
more information.

The existence of Hadamard matrices for orders different than a power of two was established by Hadamard
[16] when he constructed Hadamard matrices of order 12 and 20. Other constructions of Hadamard matrices
include the famous Paley Construction [23] and Williamson Construction [31]. In fact, the literature of
Hadamard matrices and their constructions is quite extensive. Some examples are [2, 10, 17, 20, 30]. The
smallest order of the form 4k for which a Hadamard matrix cannot be constructed by a combination of
known methods and for which no Hadamard matrix is known is 668.

There are various ways to generalize the concept of Hadamard matrices. The one that we use in this
article is the concept of complex Hadamard Matrices. An n × n matrix H is called a complex Hadamard
matrix if all its entries Hij are complex numbers with |Hij | = 1 (unimodularity) and

(2.6) HH
T

= nIn,

where H represents the matrix obtained by complex conjugation of all entries of H.
One of the most notable differences between complex Hadamard matrices and real Hadamard matrices

is their existence. While the order n of a real Hadamard matrix is necessarily 1, 2 or 4m, with m a natural
number, complex Hadamard matrices exist for any natural n. The classical example is the n × n Discrete
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Fourier Transform matrix Wn (DFT), which is defined by

(2.7) Wn =
1√
n



1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωn−1

1 ω2 ω4 ω6 · · · ω2(n−1)

1 ω3 ω6 ω9 · · · ω3(n−1)

...
...

...
...

. . .
...

1 ωn−1 ω2(n−1) ω3(n−1) · · · ω(n−1)(n−1)


,

where ω = e2πi/n is a primitive nth root of unity. Observe that if Fn =
√
nWn, then

(2.8) FnFn
T

= nIn.

Thus, Fn is a complex Hadamard matrix of order n.
Two complex Hadamard matrices H and H ′ are called equivalent if there exist diagonal unitary matrices

D1 and D2 and permutation matrices P1 and P2 such that

(2.9) H ′ = D1P1HP2D2.

An n × n complex Hadamard matrix is called dephased when its first column and first row are 1 and 1T

(resp.) where 1 is the column vector of dimension n whose entries are all 1’s. For example, the rescaled
Discrete Fourier Transform matrix Fn is dephased. Every complex Hadamard matrix is equivalent to a
dephased one. This is actually very simple to see if the Hadamard matrix H has first row equal to 1T . Given
an n× n complex Hadamard matrix H = (Hjk) whose first row is equal to 1T , define Deph(H) as

(2.10) Deph(H) = DH ·H,

where

(2.11) DH =


1 0 0 · · · 0
0 H−12,1 0 · · · 0

0 0 H−13,1 · · · 0
...

...
...

. . .
...

0 0 0 · · · H−1n,1

 .

Observe that the result of this matrix multiplication is equal to the matrix obtained from H by multiplying
each row of H by the inverse of its first entry. Clearly, Deph(H) is dephased and

Deph(H) ·Deph(H)
T

= DH ·H ·H
T ·DH

T
(2.12)

= DH · nIn ·DH
T

= nIn.

Thus, Deph(H) is complex Hadamard and, according to definition (2.9), equivalent to H.

Remark 2.1. Following what is now a “not so good” habit in the culture of mathematicians, we abuse
notation Deph(H). For now on we use Deph(H) to represent a dephased Hadamard matrix for which H is
equivalent to, even though we defined Deph(H) for Hadamard matrices with first row equal to 1T .

In the next section we expose a connection between Hadamard matrices and exponential sums of quadratic
symmetric polynomials over Galois fields. This relationship flourishes when the recursive nature of this
sequences is explored.

3. A connection to Hadamard matrices

As mentioned in the introduction, we present a beautiful relation between Hadamard matrices and ex-
ponential sums of quadratic symmetric polynomials over Galois fields. Let en,k denotes the elementary
symmetric polynomial in n variables of degree k. This polynomial is formed by adding together all distinct
products of k distinct variables. For example,

(3.1) e4,3 = X1X2X3 +X1X4X3 +X2X4X3 +X1X2X4.
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Consider the Galois field Fq where q = pr with p prime and r ≥ 1. Recall that the exponential sum of a
function F : Fnq → Fq is defined by

(3.2) SFq (F ) =
∑
x∈Fnq

e
2πi
p TrFq/Fp (F (x)),

where TrFq/Fp represents the field trace function from Fq to Fp. The field trace function can be explicitly
defined as

(3.3) TrFq/Fp(α) =

r−1∑
i=0

αp
i

,

with arithmetic done in Fq.
Similar to the Boolean case, a function F : Fnq → Fq is balanced if its values are uniformly distributed.

That is, if F takes each value of Fq exactly qn−1 times. As in the case of Boolean functions, if a function
F : Fnq → Fq is balanced, then SFq (F ) is 0. The converse is not necessarily true, however it holds if q = p.
In [8], Castro, Chapman, Medina and Sepúlveda showed that exponential sums of elementary symmetric
polynomials and linear combinations of them are linear recurrent with integer coefficients. In principle, this
implies that exponential sums of this type of functions can be computed rapidly.

The argument presented in [8] is actually quite simple: find a recursive generating set for SFq (en,k). That
is, find a set of sequences

{{a1(n)}, {a2(n)}, · · · , {as(n)}},

such that for some integer l,

SFq (en,k) =

s∑
j=1

cj · aj(n− l)

where cj ’s are constants, and, for each 1 ≤ j0 ≤ s and every n, one has

aj0(n) =

s∑
j=1

dj0,j · aj(n− 1),

where dj0,j ’s are constant. Once this is done, then to find a linear recurrence satisfied by {SFq (en,k)}, it is
enough to find an annihilating polynomial Q(X) for the matrix A = (dij). A polynomial Q(X) is said to be
an annihilating polynomial for a n × n matrix A if Q(A) = O, where O represents the n × n matrix whose
entries are all 0. Note that the sequence {SFq (en,k)} will satisfy the linear recurrence with characteristic
polynomial Q(X) because it is a linear combination of the {aj(n)}.

Let us illustrate the problem with a detailed example.

Example 3.1. Consider the irreducible polynomial f(X) = X3 +X + 1 in F2[X]. Make the identification

(3.4) F8 = F2[X]/(f(X)),

and let α = [X], i.e. α is the equivalence class of X. This implies that α3 = α+ 1. Now order F8 using the
lexicographic order, that is,

F8 =
{

0, 1, α, α+ 1, α2, α2 + 1, α2 + α, α2 + α+ 1
}

(3.5)

= {β0, β1, β2, β3, β4, β5, β6, β7}.

Consider the sequence {SF8
(en,2)}. Observe that if we let Xn assume the value βj , then en,2 gets transformed

to

(3.6) en−1,2 + βjen−1,1.

Thus, letting Xn assume all values in the field leads to
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SF8
(en,2) =

∑
x∈Fn8

(−1)TrF8/F2 (en,2(x))(3.7)

=

7∑
j=0

∑
(x1,··· ,xn−1)∈Fn−1

8

(−1)TrF8/F2 (en,2(x1,··· ,xn−1,βj))

=

7∑
j=0

∑
x∈Fn−1

8

(−1)TrF8/F2 (en−1,2(x)+βjen−1,1(x))

=

7∑
j=0

SF8(en−1,2 + βjen−1,1).

Define aβj (n) = SF8
(en,2 +βjen,1). Observe that if we show that every {aβj (n)} satisfies a common linear

recurrence, then {SF8
(en,2)} will satisfy such recurrence.

Consider the polynomial en,2 +βlen,1. As before, letting Xn assume the value βj transforms en,2 +βlen,1
into

(3.8) en−1,2 + (βl + βj)en−1,1 + βlβj .

Therefore, letting Xn assume all values in the field leads to

(3.9) aβl(n) =

7∑
j=0

(−1)TrF8/F2 (βlβj)aβl+βj (n− 1).

Using the values

TrF8/F2
(βj) = 0, for j = 0, 2, 4, 6(3.10)

TrF8/F2
(βj) = 1, for j = 1, 3, 5, 7,

equation (3.9) can be written in matrix form as

(3.11)



aβ0
(n)

aβ1
(n)

aβ2
(n)

aβ3(n)
aβ4(n)
aβ5

(n)
aβ6

(n)
aβ7

(n)


=



1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1

1 1 1 1 −1 −1 −1 −1
−1 1 −1 1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1
−1 1 1 −1 −1 1 1 −1

1 1 −1 −1 −1 −1 1 1
−1 1 1 −1 1 −1 −1 1





aβ0
(n− 1)

aβ1
(n− 1)

aβ2(n− 1)
aβ3(n− 1)
aβ4

(n− 1)
aβ5

(n− 1)
aβ6

(n− 1)
aβ7

(n− 1)


.

Denote by M8 the matrix in (3.11). If we wish to find a linear recurrence with constant coefficients satisfied
by {SF8

(en,2)}, then it is enough to find an annihilating polynomial for M8. That is because every {aβj (n)}
will satisfy the linear recurrence whose characteristic polynomial is given by this annihilating polynomial.

A simple, but perhaps tedious, calculation shows that the minimal polynomial of M8 is q8(X) = X4 + 64.
Thus, {SF8

(en,2)} satisfies the linear recurrence whose characteristic polynomial is q8(X). Explicitly, if we
define

x2 = SF8
(e2,2) = 8(3.12)

x3 = SF8
(e3,2) = 0

x4 = SF8(e4,2) = −64

x5 = SF8(e5,2) = −512

xn = −64xn−4, for n ≥ 6,

then SF8
(en,2) = xn. In fact, using this recurrence we know that the first few values of {SF8

(en,2)}n≥2 are

8, 0,−64,−512,−512, 0, 4096, 32768, 32768, 0,−262144, · · · .
This calculation is done almost instantly. For example, using an old computer (whose features are not top
of the art) from one of the authors, it took 0.116 seconds to calculate SF8(e50000,2) which is a number with
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22, 578 digits. Also, this recurrence implies that en,2 is balanced over F8 if and only if n = 4m− 1 for m a
positive integer. This coincides with a conjecture given in [1]. This concludes the example.

In [8], the sequence {SFp(en,2)}, for p prime, was studied in some details. In particular, it was observed
that this sequence is linear recurrent and that its recursive nature is dominated by the matrix

(3.13) Mp =



1 1 1 1 · · · 1

e
2(p−1)πi

p 1 e
2πi
p e

4πi
p · · · e

2(p−2)πi
p

e
2×2(p−2)πi

p e
2×2(p−1)πi

p 1 e
4πi
p · · · e

2×2(p−3)πi
p

e
2×3(p−3)πi

p e
2×3(p−2)πi

p e
2×3(p−1)πi

p 1 · · · e
2×2(p−3)πi

p

...
...

...
...

. . .
...

e
2(p−1)πi

p e
2×2(p−1)πi

p e
2×3(p−1)πi

p e
2×4(p−1)πi

p · · · 1


.

The matrix Mp turns out to be a very interesting mathematical object. First, it can be obtained from the
p× p Fourier Discrete Transform Matrix by replacing its j-row rj by RTCj−1(rj), where RTC is the rotate
through carry function

(3.14) RTC(a1, a2, · · · , an) = (an, a1, a2, · · · , an−1)

and RTCm represents m iterations of RTC. Second, its eigenvalues are given by

λ =

(
−2

p

)
g(1; p)ζ−sa

2

,

where
(
a
p

)
is the Legendre symbol, g(a; p) is the quadratic Gauss sum mod p, s = (p− 1)/2, and ζ = e2πi/p.

And third, the matrix Mp is complex Hadamard.
The fact that all the matrices associated to {SFp(en,2)} for p prime are Hadamard leads to question if

this holds for matrices associated to {SFq (en,2)} when q is a power of a prime. In order to try to answer
this, let us revisit M8, the matrix in Example 3.1. The reader can check using her favorite computer algebra
system that this matrix is indeed real Hadamard. Of course, there is, up to equivalence, only one Hadamard
matrix of order 8. This means that the Sylvester matrix H8 and M8 are equivalent. Indeed, Deph(M8) can
be constructed from H8 by applying the permutation σ = (1 8)(2 7)(3 4)(5 6) to the columns of H8.

Notation 3.2. Let A be an n × n matrix and let σ ∈ Sn, where Sn represents the symmetric group of
n symbols. The expression σ(A) represents the matrix that can be constructed from A by applying the
permutation σ to its columns.

Let us do another example to see if the pattern continues.

Example 3.3. Construct F16 by identifying

(3.15) F16 = F2[X]/(f(X)),

where f(X) = X4 + X + 1 in F2[X] is irreducible. Let α = [X], then α4 = α + 1. Order F16 using the
lexicographic order, that is,

F16 =
{

0, 1, α, α+ 1, α2, · · · , α3 + α2 + α+ 1
}

(3.16)

= {β0, β1, β2, β3, β4, · · · , β15}.

Consider the sequence {SF16
(en,2)} and proceed as in Example 3.1. This process produces a matrix M16 of

order 16 with entries ±1. As in the previous example, the matrix M16 turns out to be (real) Hadamard. It
was mentioned in the previous section that there are 5 inequivalent Hadamard matrices of order 16, one of
them being the Sylvester matrix H16. It is natural to ask to which of these 5 matrices our Hadamard matrix
is equivalent to. The answer is to the Sylvester matrix H16! Indeed, Deph(M16) can be constructed from
H16 by applying the permutation

σ = (1 15 10 7 9 16)(2 8)(3 11 12)(5 13 14).

to the columns of H16. In other words, Deph(M16) = σ(H16).

Another example, but with q odd.
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Example 3.4. Similar to Example 3.1, the identification F9 = F3[X]/(f(X)), where f(X) = X2 + 1 is
irreducible in F3[X] produces the matrix

M9 =



1 1 1 1 1 1 1 1 1

e
2iπ
3 1 e−

2iπ
3 e

2iπ
3 1 e−

2iπ
3 e

2iπ
3 1 e−

2iπ
3

e
2iπ
3 e−

2iπ
3 1 e

2iπ
3 e−

2iπ
3 1 e

2iπ
3 e−

2iπ
3 1

e−
2iπ
3 e−

2iπ
3 e−

2iπ
3 1 1 1 e

2iπ
3 e

2iπ
3 e

2iπ
3

1 e−
2iπ
3 e

2iπ
3 e

2iπ
3 1 e−

2iπ
3 e−

2iπ
3 e

2iπ
3 1

1 e
2iπ
3 e−

2iπ
3 e

2iπ
3 e−

2iπ
3 1 e−

2iπ
3 1 e

2iπ
3

e−
2iπ
3 e−

2iπ
3 e−

2iπ
3 e

2iπ
3 e

2iπ
3 e

2iπ
3 1 1 1

1 e−
2iπ
3 e

2iπ
3 e−

2iπ
3 e

2iπ
3 1 e

2iπ
3 1 e−

2iπ
3

1 e
2iπ
3 e−

2iπ
3 e−

2iπ
3 1 e

2iπ
3 e

2iπ
3 e−

2iπ
3 1


.

It can be verified that this matrix is indeed complex Hadamard. Moreover, its eigenvalues are all of the
form −g(1; 3)2ζb3 where b ∈ F3, g(a; p) is the quadratic Gauss sum mod p and ζ3 = e2πi/3. Thus, a behavior
similar to the one for SFp(en,2) seems to hold for q = pr. This is explored in the next section where a formula
for the eigenvalues of Mq when q is odd is provided.

The reader is encouraged to experiment and convince herself that all matricesMq’s associated to {SFq (en,2)},
for q = pr, appear to be complex Hadamard. Moreover, in the case when q = 2r is a power of 2, the matrix
seems to be real Hadamard and its dephased form is a permutation of the columns of the Sylvester matrix
H2r . Think of this as if the dephased form of our matrix is a “permutation away” from the Sylvester matrix.
In the next section we prove these facts.

4. The recursive nature of quadratic symmetric polynomials and Hadamard matrices

In this section we prove the assertions presented in the previous section. That is, all matrices Mq’s
associated to {SFq (en,2)} are complex Hadamard and in the case when q = 2r, the produced matrix is
equivalent to H2r because its Deph(M2r ) is a permutation away from it. We also find explicit formulas for
the eigenvalues of our matrices, which in turns allows us to provide closed formulas for SFq (en,2).

Let α ∈ Fq be a primitive element, that is, Fq = {0, 1, α, α2, · · · , αq−2}. Similar to Example 3.1, one has

(4.1) SFq (en,2) = SFq (en−1,2) +

q−2∑
j=0

SFq (en−1,2 + αjen−1,1).

Therefore, if we define

(4.2) aβ(n) = SFq (en,2 + βen,1), for β ∈ Fq,

then

(4.3) SFq (en,2) =
∑
β∈Fq

aβ(n− 1).

Thus, the recursive nature of {SFq (en,2)} is dominated by the sequences {aβ(n)}. Again, similar to Example
3.1, one has

(4.4) aγ(n) =
∑
β∈Fq

e
2πi
p ·Tr(γβ)aγ+β(n− 1),

where Tr = TrFq/Fp is the field trace. Therefore, if we let

(4.5) a(n) =



a0(n)
a1(n)
aα(n)
aα2(n)

...
aαq−2(n)


,

then (4.4) can be written as a(n) = Mq · a(n− 1) for a suitable matrix Mq.
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Theorem 4.1. Let q = pr with p prime. The matrix Mq is a q × q complex Hadamard matrix.

Proof. Define λβ(x) = x+ β. Then the matrix Mq is given by

(4.6) Mq =


R0(q)
R1(q)
Rα(q)

...
Rαq−2(q)


where Rβ(q), for β ∈ Fq, is the row vector

(4.7) Rβ(r) =
(
e

2πi
p Tr(βλ−β(0)) e

2πi
p Tr(βλ−β(1)) e

2πi
p Tr(βλ−β(α)) · · · e

2πi
p Tr(βλ−β(α

q−2))
)
.

The row R0(q) is simply the row vector whose entries are all 1 because Tr(0) = 0. Now, for any a ∈ Fp,
we have

(4.8) |{α ∈ Fq : Tr(α) = a}| = qr−1.

This, together with the fact that the function αjλ−αj (X) is a permutation of Fq, implies that in row Rαj (q)
with j ≥ 0, each number in the set {

1, e
2πi
p , e

4πi
p , · · · , e

2(p−1)πi
p

}
appears the same amount of times. It is clear that

R0(q) ·R0(q) = q(4.9)

Rαj (q) ·Rαj (q) = q, for j ≥ 0.

Also, if j ≥ 0, then

(4.10) R0(q) ·Rαj (q) = 0,

because, as mentioned before, all entries of R0(q) are 1’s and each number in the set{
1, e

2πi
p , e

4πi
p , · · · , e

2(p−1)πi
p

}
appears the same amount of times in Rαj (q).

Suppose now that 0 ≤ l, j ≤ q − 2 and l 6= j. The linearity of the field trace function implies

Rαl(q) ·Rαj (q) =
∑
β∈Fq

e
2πi
p (Tr(αlλ−αl (β))−Tr(α

jλ−αj (β)))(4.11)

=
∑
β∈Fq

e
2πi
p Tr(αlλ−αl (β)−α

jλ−αj (β))

However, note that if f : Fq → Fq is defined as

(4.12) f(X) = αlλ−αl(X)− αjλ−αj (X),

then

f(X) = αlλ−αl(X)− αjλ−αj (X)(4.13)

= αl(X − αl)− αj(X − αj)
= (αl − αj)X + α2l − α2j .

But α is a primitive element of Fq and l 6= j, therefore f(X) is injective. This implies that

Rαl(q) ·Rαj (q) =
∑
β∈Fq

e
2πi
p Tr(αlλ−αl (β)−α

jλ−αj (β))(4.14)

=
∑
γ∈Fq

e
2πi
p Tr(γ).

However, as mentioned before, for any a ∈ Fp one has

(4.15) |{α ∈ Fq : Tr(α) = a}| = qr−1.
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Thus,

Rαl(q) ·Rαj (q) =
∑
γ∈Fq

e
2πi
p Tr(γ)(4.16)

= qr−1
p−1∑
j=0

e
2πij
p = 0,

because e2πi/p is a root of 1 +X +X2 + · · ·+Xp−1. Equations (4.9), (4.10) and (4.16) imply

(4.17) MqMq
T

= qIq

where Iq is the q × q identity matrix. Thus, Mq is Hadamard. This concludes the proof. �

In [8], a beautiful formula for the eigenvalues of Mp was established. Their formula included the number-
theoretical quadratic Gauss sum mod p and the Legendre symbol. In particular, they show the following
theorem.

Theorem 4.2. [8, Th. 5.4] Let C(p) be set of eigenvalues of Mp were p is an odd prime. Let ζp = e2πi/p.
Then λ ∈ C(p) if and only if

(4.18) λ =

(
−2

p

)
g(1; p)ζ−sa

2

p ,

where g(a; p) is the quadratic Gauss sum mod p and s = (p− 1)/2. In particular, |C(p)| = (p+ 1)/2.

Moreover, in the proof of Theorem 4.2, the authors of [8] showed that Mp is diagonalizable. A consequence
of this, and which was not stated in [8], is the following result.

Theorem 4.3. Let p be an odd prime. Let

(4.19) λj(p) =

(
−2

p

)
g(1; p)ζ

−sa2j
p ,

for 1 ≤ j ≤ (p+ 1)/2 be all the different eigenvalues in C(p). Then,

SFp(en,2) =

(p+1)/2∑
j=1

cj(p)λj(p)
n(4.20)

=

(p+1)/2∑
j=1

cj(p)

(
−2

p

)n
g(1; p)nζ

−sna2j
p

for some suitable constants cj(p).

Proof. Since the matrix Mp is diagonalizable, then the polynomial

µp(X) =

(p+1)/2∏
j=1

(X − λj(p))

is the minimal polynomial for Mp. But then the sequence {SFp(en,2)} satisfies the linear recurrence whose
characteristic polynomial is µp(X). The result now follows from the theory of linear recurrences. �

It is natural to ask if something similar happens for the matrices Mq. As mentioned in the previous
section (see Example 3.4), the eigenvalues of M9 are all of the form −g(1; 3)2ζb3 where b ∈ F3, g(a; p) is the
quadratic Gauss sum mod p and ζ3 = e2πi/3. A similar calculation implies that the eigenvalues of M25 are
all of the form −g(1; 5)2ζb5 and the ones for M27 and M125 are of the form(

−2

3

)
g(1; 3)3ζb3 and

(
−2

5

)
g(1; 5)3ζb5,

respectively. In fact, we have the following result.
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Theorem 4.4. Suppose that q = pr with p odd prime and r > 1. Let C(q) be the eigenvalues of Mq. Let

ζp = e2πi/p. Then λ ∈ C(q) if and only if

λj(q) =

(
−2

Fq

)
g(1;Fq)ζjp(4.21)

= (−1)r−1
(
−2

p

)r
g(1; p)rζjp,

where j ∈ Fp, g(a;Fq) and g(a; p) are the quadratic Gauss sum in Fq and Fp (resp.), and (−2/Fq) and
(−2/p) are the Legendre’s symbol in Fq and Fp (resp.). In particular, |C(q)| = p.

Proof. Let Fq = {α0, α1, · · · , αq−1} with α0 = 0. Let Tr = TrFq/Fp . We will prove that the λj(q)’s are all
the eigenvalues of Mq by finding their corresponding eigenvectors.

Define vαa(q) as the column vector whose k entry, for 0 ≤ k ≤ q − 1, is

ζ
sTr((αk−αa)2)
p .

The j entry of Mqvαa(q) is

q−1∑
k=0

ζ
Tr(αj(αk−αj))+sTr((αk−αa)2)
p .

However, observe that

Tr (αj(αk − αj)) + sTr
(
(αk − αa)2

)
= Tr

(
αj(αk − αj) + s(αk − αa)2

)
(4.22)

= Tr
(
αjαk − α2

j + sα2
k − 2sαaαk + sα2

a

)
= Tr

(
−2sαjαk + 2sα2

j + sα2
k − 2sαaαk + sα2

a

)
= Tr

(
s(αk − αa − αj)2 + sα2

j − 2sαaαj
)
.

This implies that the j entry of Mqvαa(q) is

q−1∑
k=0

ζ
Tr(s(αk−αa−αj)2+sα2

j−2sαaαj)
p = g(s;Fq)ζ

Tr(s(αj−αa)2−sα2
a)

p

Observe that this is g(s;Fq)ζ
Tr(−sα2

a)
p times the j entry in vαa(q). Therefore, vαa(q) is an eigenvector with

eigenvalue

g(s;Fq)ζ
Tr(−sα2

a)
p =

(
s

Fq

)
g(1;Fq)ζ

Tr(−sα2
a)

p =

(
−2

Fq

)
g(1;Fq)ζ

−sTr(α2
a)

p .

The claim that the eigenvalues of Mq are all of the form(
−2

Fq

)
g(1;Fq)ζbp = (−1)r−1

(
−2

p

)r
g(1; p)rζbp, for b ∈ Fp

follows from the fact that the function f : Fq → Fp given by f(αa) = −sTr(αa) is surjective and the classical
formulas

(4.23)

(
a

Fq

)
=

(
a

p

)r
and g(1;Fq) = (−1)r−1g(1; p)r.

The linear independence of the vectors vαa(q), for 0 ≤ a ≤ q − 1 (see next proposition) completes the
proof. �

In order for the proof of Theorem 4.4 to be complete, we need to show that the vectors vαa(q), for
0 ≤ a ≤ q − 1, are linearly independent. However, this is a consequence of the following (beautiful) result.

Proposition 4.5. The matrix Aq, whose a-th row is given by vαa(q)T , is complex Hadamard, i.e. Aq ·Aq
T

=
qIq where Iq is the q × q identity matrix. In particular, the vectors vαa(q), for 0 ≤ a ≤ q − 1, are linearly
independent.
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Proof. Let Tr = TrFq/Fp . By definition,

vαj (q)
T =

(
ζ
−sTr((α0−αj)2)
p , ζ

−sTr((α1−αj)2)
p , · · · , ζ−sTr((αq−1−αj)2)

p

)
.

It is clear that

vαj (q)
T · vαj (q)

T
= q.

On the other hand, suppose that 0 ≤ k, j ≤ q − 1 and k 6= j. Then,

vαk(q)T · vαj (q)
T

=

q−1∑
m=0

ζ
sTr((αm−αk)2)−sTr((αm−αj)2)
p

=

q−1∑
m=0

ζ
sTr(2(αj−αk)αm+α2

k−α
2
j).

p

However, the function f(X) = 2s(αj − αk)X + α2
k − α2

j is a bijection of Fq. Thus,

vαk(q)T · vαj (q)
T

=

q−1∑
m=0

ζ
sTr(2(αj−αk)αm+α2

k−α
2
j)

p

=
∑
β∈Fq

ζTr(β)p = 0.

We conclude that Aq is complex Hadamard. �

Observe that Theorem 4.4 and Proposition 4.5 imply that, for q = pr with p odd prime and r > 1, the
minimal polynomial for the sequence {SFq (en,2)} is

µq(X) =

p−1∏
j=0

(X − λj(q)) .

In particular, we have the following corollary.

Corollary 4.6. Let q = pr with p odd prime and r > 1. Then,

SFq (en,2) =

p−1∑
j=0

cj(q)λj(q)
n(4.24)

=

p−1∑
j=0

cj(q)

(
−2

Fq

)n
g(1;Fq)nζjnp

=

(
−2

Fq

)n
g(1;Fq)n

p−1∑
j=0

cj(q)ζ
jn
p

for some suitable constants cj(q). Moreover, the constants cj(q)’s depend on the λk(q)’s and the values
SFq (σm,2) for m = 2, 3, · · · , p+ 1.

Proof. The first claim is consequence of Theorem 4.4, Proposition 4.5 and the theory of linear recurrences.
The second claim follows by solving the linear system

λ0(q)2 λ1(q)2 · · · λp−1(q)2

λ0(q)3 λ1(q)3 · · · λp−1(q)3

...
...

. . .
...

λ0(q)p+1 λ1(q)p+1 · · · λp−1(q)p+1




c0(q)
c1(q)

...
cp−1(q)

 =


SFq (e2,2)
SFq (e3,2)

...
SFq (ep+1,2)

 .

�

In practice, the calculation of the values SFq (em,2) for m = 2, 3, · · · , p+ 1 might not be an easy task.
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Example 4.7. Consider F9 = F3[X]/(X2 + 1). Let α = [X]. Observe that(
−2

F3

)
= 1 and g(1;Fq) = 3.

Therefore,

SF9
(en,2) = 3n

(
c0(9) + c1(9)e

2πin
3 + c2(9)e

4πin
3

)
.

Using the values

SF9
(e2,2) = 9

SF9
(e3,2) = 27

SF9
(e4,2) = 243,

and solving the corresponding linear system we find

c0(9) =
5

3
, c1(9) =

2

3
e

4πi
3 , c2(9) =

2

3
e

2πi
3 .

We conclude that

SF9(en,2) = 3n−1
(

5 + 2e
2iπ(n+2)

3 + 2e
2iπ(2n+1)

3

)
(4.25)

=

{
3n n ≡ 0, 2 mod 3

3n+1 n ≡ 1 mod 3.
(4.26)

A similar argument produces the identities

SF25
(en,2) = (−1)n5n−1

(
6e

(2n+3)iπ
5 + 6e

3(2n+3)iπ
5 + 6e

(4n+1)iπ
5 + 6e

(8n+7)iπ
5 − 1

)
(4.27)

=

{
(−5)n n 6≡ 1 mod 5

(−5)n+1 n ≡ 1 mod 5.

SF27(en,2) = (−i)n3
1
2 (3n−1)

(
4e

1
6 iπ(4n−1) + 2e

1
6 iπ(8n−5) + 3i

)
=


(
−3i
√

3
)n

n ≡ 0 mod 3

−
(
−3i
√

3
)n+1

n ≡ 1 mod 3

−
(
−3i
√

3
)n

n ≡ 2 mod 3.

SF81
(en,2) = (−1)n3× 9n−1

(
10e

π
3 i(2n+1) + 10e

π
3 i(4n−1) − 7

)
=

{
(−9)n n 6≡ 1 mod 3

(−9)n+1 n ≡ 1 mod 3.

Note that in all these examples SFq (en,2) 6= 0 for every n. This is evidence of a conjecture presented in [1].

Example 4.8. The value of SF3r
(en,2) is given by

(4.28) SF3r
(en,2) = c0λ

n
0 + c1λ

n
1 + c2λ

n
2 ,

where

λj = λj(3
r) = (−1)r−1(i

√
3)re

2πij
3 ,

cj = cj(3
r) =

SF3r
(e2,2)λ[1+j]λ[2+j] − SF3r

(e3,2)
(
λ[1+j] + λ[2+j]

)
+ SF3r

(e4,2)

λ[j]2
(
λ[j] − λ[1+j]

) (
λ[j] − λ[2+j]

) ,

and [a] represents the unique integer l ∈ {0, 1, 2} such that a ≡ l mod 3.

Theorem 4.4 and Corollary 4.6 do not apply when q even. However, not everything is lost for that case.
In the previous section we observed that if q is even, then the matrix Deph(Mq) seems to be a permutation
away from the Sylvester matrix.

Theorem 4.9. Deph(M2r ) is a permutation away from the Sylvester matrix H2r .
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Proof. Let q = pr with p a prime and r a positive integer. Let f : Fq → C be a function and set ζp = e2πi/p.

The Walsh transform of f , denoted by f̂ , is defined by

(4.29) f̂(α) =
∑
β∈Fq

f(β)ζTr(αβ)p ,

where Tr = TrFq/Fp (see [22] for more details). Let α ∈ Fq be a primitive element, that is, Fq =

{0, 1, α, α2, · · · , αq−2}. The Walsh transform can be written in matrix form as

(4.30)


f̂(0)

f̂(1)

f̂(α)
...

f̂(αq−2)

 =



ζ
Tr(0·0)
p ζ

Tr(0·1)
p ζ

Tr(0·α)
p · · · ζ

Tr(0·αq−2)
p

ζ
Tr(1·0)
p ζ

Tr(1·1)
p ζ

Tr(1·α)
p · · · ζ

Tr(1·αq−2)
p

ζ
Tr(α·0)
p ζ

Tr(α·1)
p ζ

Tr(α·α)
p · · · ζ

Tr(α·αq−2)
p

...
...

...
. . .

...

ζ
Tr(αq−2·0)
p ζ

Tr(αq−2·1)
p ζ

Tr(αq−2·α)
p · · · ζ

Tr(αq−2·αq−2)
p




f(0)
f(1)
f(α)

...
f(αq−2)


The matrix in equation (4.30) is known as the Walsh Transform Matrix and it is usually denoted by Wq. The
careful reader probably noticed that this is the same notation used for the Discrete Fourier Matrix. That
is because the Walsh Transform matrix of order q for q prime coincides (upon rescaling) with the Fourier
Transform Matrix of the same order.

It is known that when q = 2r, Wq is equal, up to a permutation of columns, to the matrix obtained by
letting W1 = (1),

W2 =

(
1 1
1 −1

)
(4.31)

W2r = W2 ⊗W2r−1 .

Observe that if σ = (1 2), then W2 = σ(H2). Moreover,

(4.32) H4 =


1 1 1 1
−1 1 −1 1
−1 −1 1 1

1 −1 −1 1

 and W4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

Thus, if σ = (1 4)(2 3), then W4 = σ(H4). In general, if σ is the permutation

σ = (1 2r)(2 2r − 1) · · · (2r−1 2r−1 + 1),

then W2r = σ(H2r ). Therefore, the Walsh transform matrix W2r is a permutation away from the Sylvester
matrix H2r (in fact, in other contexts, the Walsh transform matrix W2r is the Sylvester matrix).

Let us revisit our matrix Mq. Observe that if we index our matrix by the elements of Fq, then the (β, γ)
entry of Mq is

(4.33) e
2πi
p Tr(βλ−β(γ)) = ζ

Tr(βλ−β(γ))
p = ζTr(β(γ−β))p .

This implies that the (β, γ) entry of Deph(Mq) is

ζ
Tr(βλ−β(γ))
p · ζ−Tr(βλ−β(0))

p = ζ
Tr(βλ−β(γ))−Tr(βλ−β(0))
p(4.34)

= ζ
Tr(βλ−β(γ)−βλ−β(0))
p

= ζTr(β(γ−β)−β(0−β))p

= ζTr(βγ)p .

In other words, Deph(Mq) = Wq. This implies that Deph(M2r ) is a permutation away from H2r . This
concludes the proof. �
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5. Concluding remarks

We show that the recursive behavior of exponential sums of quadratic symmetric polynomials over Galois
fields are dominated by Hadamard matrices. We also computed the spectrum of such matrices when working
over finite fields extensions of Fp for p odd prime. This result allowed us to provide closed formulas for the
corresponding exponential sums. It would be nice if similar results can be found for the associated matrices
of symmetric polynomials of higher degree.
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