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Abstract. Boolean functions are one of the most studied objects in math-

ematics. In this paper, we use the covering method to compute the exact

2-divisibility of exponential sums of boolean functions with prescribed leading
monomials. Our results generalize those of [4] and [8] for the binary field. As

an application of our findings, we provide families of boolean functions that

are not balanced, and give sufficient conditions for the solvability of systems
of boolean equations.

1. Introduction

Boolean functions are one of the most studied objects in mathematics. They
are important in many applications, for example, in the design of stream ciphers,
block and hash functions. These functions play a vital role in cryptography as they
are used as filter and combination generator of stream ciphers based on linear feed-
back shift registers. The case of boolean functions of degree 2 has been intensively
studied because of its relation to bent functions.

One can find many papers discussing the properties of boolean functions. The
subject can be studied from the point of view of complexity theory or from the
algebraic point of view as we do in this paper, where we compute the exact 2-
divisibility of exponential sums of families of boolean functions.

Divisibility of exponential sums have been used to characterize properties of
functions, as it was done, for example, by Canteaut, Charpin, and Dobbertin in [2].
In [1], Adolphson-Sperber used Newton polyhedra to improve Ax-Katz’s result on
the divisibility of exponential sums. In [6], Moreno-Moreno gave an estimate for the
divisibility of exponential sums that, in many cases, improve Adolphson-Sperber’s
result (and hence Ax-Katz’s result) when the degree of the polynomial is greater
than the characteristic of the finite field.

In [5], Moreno-Moreno introduced the covering method, which provides an ele-
mentary way to estimate the divisibility of exponential sums over the binary field.
Using this method, they gave an improvement to Ax’s theorem for the binary case.
In [7], Moreno-Castro-Mattson used the covering method to give an elementary
proof to Moreno-Moreno’s result ([6]) for finite fields of characteristic 2. Recently,
in [3], Castro-Randriam-Rubio-Mattson generalized the use of the covering method
to any finite field providing an elementary approach to compute the p-divisibility
of exponential sums of polynomials over prime fields. The authors obtain several
bounds which unify and improve a number of previous results in this direction.
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In this paper, we use the covering method to compute the exact 2-divisibility
of exponential sums of boolean functions with prescribed leading monomials. Our
results generalize those of [4] and [8] for the binary field. As an application of our
findings, we provide families of boolean functions that are not balanced, and give
sufficient conditions for the solvability of systems of boolean equations.

2. Preliminaries

Let F be the binary field, Fn = {(x1, . . . , xn) |xi ∈ F, i = 1, . . . , n}, and F (X) =
F (X1, . . . , Xn) be a polynomial in n variables over F. Sometimes we use x instead
of x1, . . . , xn. Without loss of generality, we can assume throughout the rest of the
paper that F (X) is not a polynomial in some subset of the variables X1, . . . , Xn.

The exponential sum associated to F over F is:

(2.1) S(F ) =
∑
x∈Fn

(−1)F (x).

Our aim is to compute the exact 2-divisibility of these exponential sums, this is,
to compute the highest power of 2 dividing S(F ). We denote the highest power of
2 dividing a number N by ν2(N).

One of the advantages of working over F is that one has the following identities:

(−1)x = 1− 2x and xd = x

for d > 0, x ∈ Fn. Therefore if

F (X) = Xe11
11 · · ·X

en1
n1 + · · ·+Xe1N

1N · · ·X
enN

nN ,

then

S(F ) =
∑
x∈Fn

(−1)F (x)

=
∑
x∈Fn

(1− 2xe1111 · · ·x
en1
n1 ) · · · (1− 2xe1N1N · · ·x

enN

nN )

=
∑
x∈Fn

(
1 +

∑
λ

(−2)m(λ)gλ(x)

)
,

= 2n +
∑
λ

(−2)m(λ)
∑
x∈Fn

gλ(x),(2.2)

where (−2)m(λ)gλ(x) are monomials that are products of all possible choices of
terms 2xe1i1i · · ·x

eni
ni for the factors (1 − 2xe1i1i · · ·x

eni
ni ) and m(λ) is the number of

terms in that choice. Note that
∑

x∈Fn gλ(x) = 2l, where l is the number of variables
that are missing in gλ. Hence, the exact 2-divisibility of S(F ) can be determined if
we are able to “control” the sets of monomials of F needed to cover all the variables.

Let C be a minimal set of monomials of F covering all variables, that is, every
variable Xi is in at least one monomial of C, and C is minimal with that property.
We call this set C a minimal covering of F and we assume that its cardinality is r.

Example 2.1. Let F (X1, X2, . . . , X6) = X1X2X3 +X4X5 +X5X6 +X1 + · · ·+X6

be a polynomial over F. {X1X2X3, X4X5, X5X6} and {X1X2X3, X4X5, X6} are the
minimal coverings of F with cardinality 3.
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In [5], Moreno-Moreno used minimal coverings to prove the following improve-
ment to the binary Ax’s theorem.

Theorem 2.2. Let F (X) be a polynomial over F and let C be a minimal covering
of F . If |C| = r, then

ν2(S(F )) ≥ r.

The relation between an exponential sum S(F ) =
∑

x∈Fn(−1)F (x) and the num-
ber of zeros of a system of polynomials F1(X), · · · , Ft(X) is given by the following
lemma.

Lemma 2.3. Let F1(X), · · · , Ft(X) ∈ F[X] and N be the number of common zeros
of F1, · · · , Ft. Then,

N = 2−tS (Y1F1(X) + · · ·+ YtFt(X)) .

3. Exact 2-divisibility of exponential sums and solvability of systems
of equations

In the next lemmas we give conditions on a covering C of a boolean function F
that will allow us to determine the 2-divisibility of certain products of monomials in
F . We show that the only product of monomials in F for which the corresponding
term

∑
x∈Fn gλ(x) in (2.2) is not divisible by 2r+1 is the product of the r monomials

in C. Hence, the exact 2-divisibility of S(F ) is 2r.

Lemma 3.1. Let F (X) be a polynomial over F, and C be a minimal covering of
F , |C| = r, such that each monomial in C has at least two variables that are not
contained in the set of all other monomials in C. With notations as in (2.2), if gλ
is a product of m(λ) < r monomials in C, then

2r+1|2m(λ)
∑
x∈Fn

gλ(x).

Proof. Suppose that gλ is the product of m(λ) < r monomials of F . Then gλ misses
l ≥ 1 variables and 2l|gλ . Let C = {a1(X), . . . , ar(X)} be a minimal covering of
F , where each monomial has at least two variables that are not contained in the
other monomials of C. Consider

(3.1) 2m(λ)
∑
x∈Fn

gλ(x) = 2m(λ)
∑
x∈Fn

m(λ)∏
j=1

aij (x) .

Since there are r − m(λ) monomials of the covering that are not included in the
product, gλ is missing at least l = 2 (r −m(λ)) variables. Therefore m(λ) + l ≥
m(λ) + 2r − 2m(λ) ≥ 2r − m(λ) > 2r − r = r. This implies that 2r+1 divides
(3.1). �

Lemma 3.2. Let F (X) be a polynomial over F, and C be a unique minimal covering
of F , |C| = r. With notations as in (2.2), if gλ is a product of m(λ) ≤ r monomials
in F such that not all of them belong to C, then

2r+1|2m(λ)
∑
x∈Fn

gλ(x).
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Proof. Let T = 2m(λ)
∑

x∈Fn gλ(x), be such that gλ is a product of m(λ) ≤ r
monomials in F and not all of them belong to the unique minimal covering C. If
m(λ) = r, then gλ misses at least one variable because otherwise the monomials in
the product would form another minimal covering of F . Therefore 2r+1|T .

If 2m(λ)+l|T , where m(λ) + l = a ≤ r, and l ≥ 1 are the missing variables in
gλ, then one can construct a covering of F in the following way: for each missing
variable in gλ, we select a monomial in C containing the missing variable. The new
covering C′ is the set of all the m(λ) monomials of F that formed gλ and the l
monomials from the covering C containing the missing variables. This implies that
|C′| = a ≤ r. If |C′| = r, then, since the covering C is unique, the monomials that
formed gλ were all from C, which is a contradiction. If |C′| < r, we found a covering
smaller than the minimal, which is also a contradiction.

�

The next proposition gives sufficient conditions on the covering C of a boolean
function in order to compute the exact 2-divisibility of the exponential sum of the
function. As a consequence we get conditions for a boolean function F being not
balanced, this is, conditions for F with S(F ) 6= 0.

Proposition 3.3. Let F (X) be a polynomial over F, and let C be a unique minimal
covering of F such that each monomial in C has at least two variables that are not
contained in the set of all other monomials in C, and |C| = r. Then, ν2 (S(F )) = r.
In particular, S(F ) 6= 0.

Proof. Let C = {a1 (X) , . . . , ar (X)}, and

T = 2m(λ)
∑
x∈Fn

gλ(x).

It is clear that if m(λ) > r, then 2r+1|T . By Lemmas 3.1 and 3.2, if gλ is a product
of m(λ) ≤ r monomials in F such that not all of them belong to C, or gλ is a
product of less than r monomials in C, then 2r+1|T . The result follows when one
notice that

∏r
i=i ai (X) = X1 · · ·Xn is the only monomial gλ with

2m(λ)
∑
x∈Fn

gλ(x) = 2m(λ)
∑
x∈Fn

x1 · · ·xn = 2r.

�

With the above proposition, if one can guarantee that a boolean function F has
a unique minimal covering with certain property, then one can compute the exact
2-divisibility of the exponential sum of F . But, in general, it is not an easy task to
find all the minimal coverings of a polynomial. In the following theorem, which is
our main result, we give sufficient conditions to construct boolean functions with
the appropriated coverings and hence be able to compute the exact 2-divisibility of
their exponential sums. Essentially the theorem give us sufficient conditions on a
set C, so one can construct boolean functions with C as the appropriated covering.
This is a generalization of Theorem 4.1 of [4] and [8] for the binary case. Also the
technique in the next proof is completely different as it only requires an argument
related to the covering whereas the proofs in [4] and [8] required more sophisticated
machinery.
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Theorem 3.4. Let C = {a1(X), . . . , ar(X)} be a set of monomials covering all the
variables and with degrees greater than 1. If any monomial in C has at least s ≥ 2
variables that are not contained in the set of all the other monomials in C, then

ν2 (S (F )) = r,

where

F =

r∑
i=1

ai(X) +G(X),

and deg(G) < s. In particular S (F ) 6= 0.

Proof. By Proposition 3.3 we only have to prove that C is a unique minimal covering
of F . It is clear that any set of less than r monomials in C is not a covering of F .
Any monomial ai(X) in C has at least s ≥ 2 variables that are not covered by the
other monomials in C, and, since deg(G) ≤ s−1, if one substitutes a monomial in C
by a monomial in G there is at least one variable that it is not covered. Therefore
C is minimal and unique. �

The next example shows that, to compute the exact 2-divisibility, it is necessary
that each monomial in the covering contributes with at least two new variables to
the covering.

Example 3.5. Consider F = X1X2X3+X3X4X5+X5X6X7. Then C = {X1X2X3, X3X4X5, X5X6X7}
is the unique minimal covering of F . Note that X3X4X5 has only one variable that
it is not contained in {X1X2X3, X5X6X7} and the theorem does not apply. One
can verify that S(F ) = 26.

Corollary 3.6. With the notations of Theorem 3.4, we have that

|S(F )| ≥ 2r.

The next example shows that even though boolean functions with the same
unique minimal covering have the same 2-divisibility, there is an ample spectrum
for the exact value of S(F ).

Example 3.7. Consider F = X1X2X3X4 + X4X5X6X7 + X7X8X9 and F ′ =
X1X2X3X4+X4X5X6X7+X7X8X9+X1+X2+X3+X4+X5+X6+X7+X8+X9.
Then S(F ) = 8 · 3 · 13, and S(F ′) = 8.

Corollary 3.8. Let C = {a1(X), . . . , ar(X)} be a set of monomials covering all the
variables and with degrees 1 < di < n. If any monomial in C has at least s ≥ 2
variables that are not contained in the set of all the other monomials in C, then

|S (X1 · · ·Xn + a1(X) + · · ·+ ar(X) +G(X)) | = 2m,

where |m| ≥ 2r−1 − 1, m odd, and deg(G) < s.

Proof. Let F = X1 · · ·Xn + a1(X) + · · · + ar(X) + G(X) and F ′ = a1(X) + · · · +
ar(X) + G(X). By Theorem 3.4, we have that S(F ) = 2m and S(F ′) = 2rm′,
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where m and m′ are odd. Note that

S(F ) =
∑
x∈Fn

x1···xn=0

(−1)F (x) + (−1)F (1,...,1)

=
∑
x∈Fn

x1···xn=0

(−1)F
′(x) + (−1)F (1,...,1)

=
∑
x∈Fn

(−1)F
′(x) − (−1)F

′(1,...,1) + (−1)F (1,...,1)

= S(F ′)− 2(−1)F
′(1,...,1).

Hence 2m = 2rm′−2(−1)F
′(1,...,1) and m = 2r−1m′−(−1)F

′(1,...,1). This implies

that |m| = |2r−1m′ − (−1)F
′(1,...,1)| ≥ 2r−1|m′| − | ± 1| ≥ 2r−1 − 1. �

Theorem 3.4 give sufficient conditions to guarantee the solvability of systems of
binary equations and the computation of the exact 2-divisibility of the number of
solutions.

Theorem 3.9. Let C = {a1(X), . . . , ar(X)} be a set of monomials covering all the
variables and with degrees greater than 1. If any monomial in C has at least s ≥ 2
variables that are not contained in the set of all the other monomials in C, then
ν2 (N(F1, . . . , Ft)) = r−t, where N(F1, . . . , Ft)) is the number of common solutions
of the following system of polynomial equations:

F1 = a1(X) + · · ·+ ar1(X) +G1(X) = 0

F2 = ar1+1(X) + · · ·+ ar2(X) +G2(X) = 0

...(3.2)

Ft = art−1+1(X) + · · ·+ ar(X) +Gt(X) = 0,

where deg(Gi) < s for i = 1, . . . , t. In particular system (3.2) is solvable.

Proof. Consider

F = Y1F1(X) + Y2F2(X) + · · ·+ YtFt(X).

Then, by Lemma 2.3, N(F1, . . . , Ft) = 2−tS(F ), v2 (N(F1, . . . , Ft)) = v2 (S(F ))− t
and one just have to prove that ν2 (S(F )) = r to obtain the result.

Note that

C = {Y1a1(X), . . . , Y1ar1(X), . . . , Ytar(X)}
is a unique minimal covering for F where each monomial has at least two variables
that are not contained in the other monomials. The result follows from Proposition
3.3. �

Example 3.10. Let F (X1, . . . , X48) = X1X2X3 +X4X5X6 + · · ·+X46X47X48 +
G(X1, . . . , X48) be a polynomial over F, where deg(G) < 3. Then N(F−α) = 215 ·m
for α ∈ F, where m is odd.

To obtain unique minimal coverings it is enough to construct monomials of dis-
joint support that cover all the variables. The next result gives a simple way to
construct boolean functions with exponential sums of exact 2-divisibility.
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Corollary 3.11. Let C = {a1(X), . . . , ar(X)} be a set of monomials of disjoint
support covering all the variables and with degrees greater than 1. Then

ν2 (S (F )) = r,

where

F =

r∑
i=1

ai(X) +G(X),

and, deg(G) < min
1≤i≤r

deg(ai(X)). In particular S (F ) 6= 0.

The following corollary determines the exact 2-divisibility of the number of solu-
tions of systems of polynomial equations with conditions similar to the conditions
on Corollary 3.11.

Corollary 3.12. Let C = {a1(X), . . . , ar(X)} be a set of monomials of disjoint sup-
port covering all the variables and with degrees greater than 1. Then ν2 (N(F1, . . . , Ft)) =
r− t, where N(F1, . . . , Ft)) is the number of common solutions of the following sys-
tem of polynomial equations:

F1 = a1(X) + · · ·+ ar1(X) +G1(X) = 0

F2 = ar1+1(X) + · · ·+ ar2(X) +G2(X) = 0

...(3.3)

Ft = art−1+1(X) + · · ·+ ar(X) +Gt(X) = 0,

where deg(Gi) < min1≤j≤r deg (aj(X)) for i = 1, . . . , t. In particular system (3.3)
is solvable.

Example 3.13. The following system of polynomial equations in 13 variables is
solvable for any (α1, α2, α3) ∈ F3:

X1X2X3X4X5 +
∑
i

Xi = α1

X6X7X8X9 +
∑
i<j

XiXj = α2

X10X11X12X13 +
∑
i<j<k

XiXjXk = α3.

Example 3.14. Let N(α1, α2) be the number of solutions of the following system
of polynomial equations:

X1X2X3X4 +X5X6X7X8 +
∑
i<j

XiXj = α1(3.4)

X9X10X11X12X13X14 +X1X2X3 +X3X4X5 + · · ·+X12X13X14 = α2.

Corollary 3.12 implies that this system is solvable for any (α1, α2) and N(α1, α2) =
2m, where m is odd. The next table shows the exact number of solutions of the
system for each (α1, α2).

N(0, 0) N(1, 0) N(0, 1) N(1, 1)
2 · 32 · 293 2 · 37 · 67 2 · 32 · 163 2 · 1609
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