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Abstract. In this paper we consider perturbations of symmetric boolean

functions σn,k1
+ · · · + σn,ks in n-variable and degree ks. We compute the

asymptotic behavior of boolean functions of the type

σn,k1
+ · · · + σn,ks + F (X1, . . . , Xj)

for j fixed. In particular, we characterize all the boolean functions of the type

σn,k1
+ · · · + σn,ks + F (X1, . . . , Xj)

that are asymptotic balanced. We also present an algorithm that computes
the asymptotic behavior of a family of Boolean functions from one member

of the family. Finally, as a byproduct of our results, we provide a relation

between the parity of families of sums of binomial coefficients.

1. Introduction

Boolean functions are very important in the theory of error-correcting codes as
well as in cryptography. These functions are beautiful combinatorial objects with
rich combinatorial properties. In particular, symmetric booleans have received a
lot attention for their advantage since they can be identified by an (n+1) bit vector
(for example, see [31, 7, 9, 10, 19, 26]).

One can find many papers and books discussing the properties of boolean func-
tions (see, for example, [5, 13, 2, 6]). The subject can be studied from the point of
view of complexity theory or from the algebraic point of view as we do in this pa-
per, where we compute the asymptotic behavior of exponential sums of perturbed
symmetric boolean functions.

The correlation between two Boolean functions of n inputs is defined as the
number of times the functions agree minus the number of times they disagree all
divided by 2n, i.e.,

(1.1) C(F1, F2) =
1

2n

∑
x1,...,xn∈{0,1}

(−1)F1(x1,...,xn)+F2(x1,...,xn).

In this paper we are interested in the case when F1 + F2 can be written as σn,k1 +
σn,k2 + · · ·+σn,ks +F (X1, . . . , Xj), where σn,k is the elementary symmetric boolean
polynomial of degree k in the n variables X1, . . . , Xn and F is a boolean function
in the first j-variables (j fixed). We write C(σn,k1 + σn,k2 + · · · + σn,ks + F )
instead of C(F1, F2). In [4], A. Canteaut and M. Videau studied in detail symmetric
boolean functions. They established a link between the periodicity of the simplified
value vector of a symmetric Boolean function and its degree. Recently, a new
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cryptographic property have been introduced. This property is called algebraic
immunity of boolean functions ([20]). All the symmetric boolean functions with
maximal algebraic immunity have been found ([16, 29, 22, 17]).

In [7, 21], Carlet and Olejár-Stanek studied the asymptotic nonlinearity of boolean
functions. Later, in [23], Rodier improved their results by showing that the nonlin-

earity of almost all boolean functions is equal to
√

2m+1 log 2m.
In [14, 15], the authors considered rotation symmetric Boolean functions of de-

gree 3 in n variables. In [14], Bileschi-Cusick-Padgett provided an algorithm for
finding a recursion for the truth table of any cubic rotation symmetric Boolean func-
tion generated by a monomial (their work reduced the computational complexity).
In [15], Cusick improved the computational complexity found in [14] to something
linear in the number of variables n assuming the mild condition that the roots of
the characteristic polynomial are distinct.

In[3], J. Cai et al. computed a closed formula for the correlation between any
two symmetric Boolean functions. This formula implies that C(σn,k1 + σn,k2 +
· · · + σn,ks) satisfies a homogeneous linear recurrence with integer coefficients and
provides an upper bound for the degree of the minimal recurrence of this type that
C(σn,k1 + σn,k2 + · · ·+ σn,ks) satisfies. We obtain a homogeneous linear recurrence
with integer coefficients satisfied by C(σn,k1 +σn,k2 +· · ·+σn,ks +F ). This generalize
the result of J. Cai et al.

In this paper, we prove that

(1.2) lim
n→∞

C(σn,k1 + σn,k2 + · · ·+ σn,ks + F (X1, . . . , Xj)) = 0,

if and only if C(F (X1, . . . , Xj)) is balanced or σn,k1 + · · ·σn,ks is asymptotic bal-
anced. In [12], Cusick et al. conjectured that there no nonlinear balanced el-
ementary symmetric polynomials except for the elementary symmetric boolean
function of degree k = 2r in 2r · l − 1 variables, where r and l are any positive
integers. This conjecture has been the central topic for several papers. Recent
results about the Cusick et al.’s conjecture can be found in [27]. In [8], we charac-
terize the asymptotic behavior of the elementary symmetric boolean functions, i.e.,

lim
n→∞

C(σn,k) =
2w2(k)−1 − 1

2w2(k)−1
, where w2(k) is the Hamming weight of k. In partic-

ular, this implies that Cusick et al.’s conjecture is true for large n. Combining the
last two results, we have that when k is not a power of two, σn,k + F (X1, . . . , Xj)
is asymptotic balanced if and only if C(F ) is balanced.

In general, we compute the asymptotic value

(1.3) lim
n→∞

C(σn,k1 + σn,k2 + · · ·+ σn,ks +F (X1, . . . , Xj)) = c0(k1, . . . , kr) ·
S(F )

2j
,

where S(F ) and c0(k1, · · · , ks) are defined in section 2. We present an algorithm
to compute the asymptotic behavior of a family of symmetric boolean function
given the asymptotic behavior of one of its members. Finally, we use these asymp-
totic coefficients to prove some results about the parity of some sums of binomial
coefficients.



ASYMPTOTIC BEHAVIOR OF PERTURBATIONS OF SYMMETRIC FUNCTIONS 3

2. Preliminaries

Let F be the binary field, Fn = {(x1, . . . , xn) |xi ∈ F, i = 1, . . . , n}, and F (X) =
F (X1, . . . , Xn) be a polynomial in n variables over F. The exponential sum associ-
ated to F over F is:

(2.1) S(F ) =
∑
x∈Fn

(−1)F (x).

A boolean function F (X) is called balanced if S(F ) = 0. This property is important
for some applications in cryptography.

In [8], F. Castro and L. Medina studied exponential sums of elementary symmet-
ric polynomials. Let σn,k be the elementary symmetric polynomial in n variables
of degree k. Suppose that 1 ≤ k1 < · · · < ks are integers. Castro and Medina were
able to show that the sequence {S(σn,k1 + · · ·+σn,ks)}n∈N satisfies a homogeneous
linear recurrence with integer coefficients. They used this recurrence to study the
asymptotic behavior of such sequences. In particular, they exploited the fact that

(2.2) lim
n→∞

1

2n
S(σn,k1 + · · ·+ σn,ks) = c0(k1, · · · , ks),

where

(2.3) c0(k1, · · · , ks) =
1

2r

2r−1∑
i=0

(−1)(
i

k1
)+···+( i

ks
),

and r = blog2(ks)c+ 1.
As part of their study, they introduced the concept of an asymptotically balanced

function. We say that σn,k1 + · · ·+ σn,ks is asymptotically balanced if

(2.4) lim
n→∞

1

2n
S(σn,k1 + · · ·+ σn,ks) = 0.

Note that if a function σn,k1 + · · · + σn,ks is not asymptotically balanced, then
we know that it is not balanced for all sufficiently large n. The authors provided
families of symmetric polynomials that were asymptotically balanced and families
that were not. For example, they show that if 1 ≤ k1 < · · · < ks are integers with
ks a power of 2, then the polynomial σn,k1 + · · ·+σn,ks is asymptotically balanced.

In this article, we study some perturbations of symmetric functions and extend
some of the results of [8] to them. Recall that σn,k is the elementary symmetric
polynomial of degree k in the variables X1, · · · , Xn. Suppose that j < n and let
F (X) be a binary polynomial in the variables X1, · · · , Xj (the first j variables in
X1, · · · , Xn). We are interested in the exponential sum of polynomials of the form

(2.5) σn,k1 + · · ·+ σn,ks + F (X),

where k1 < · · · < ks. In particular, we study the sequence

{S(σn,k1 + · · ·+ σn,ks + F (X))}n∈N
where k1, · · · , ks and F (X) are fixed and n varies.

Of special interest is the asymptotic behavior of the exponential sum of (2.5).
We want to know the value (if exists) of

lim
n→∞

1

2n
S(σn,k1 + · · ·+ σn,ks + F (X)).



4 FRANCIS N. CASTRO AND LUIS A. MEDINA

Example 2.1. Consider the sequence

(2.6) {S(σn,5 +X1X2 +X1)}n∈N.

Using Mathematica 8.0 with its built-in function FindLinearRecurrence, we guess
that the sequence (2.6) satisfies the recurrence

(2.7) xn = 6xn−1 − 14xn−2 + 16xn−3 − 10xn−4 + 4xn−5.

Moreover, it can be proved, using some of the machinery presented in this paper,
that

lim
n→∞

1

2n
S(σn,5 +X1X2 +X1) =

1

4
.

In Figure 1 you can see a graphical representation of this limit. The blue dots
represents S(σn,5 +X1X2 +X1)/2n. The line y = 1/4 is in red.
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Figure 1. Graphical representation of S(σn,5 +X1X2 +X2)/2n.

In the next section we show that Example 2.1 is not a coincidence, but the rule.
In other words, we show that the exponential sum of these perturbations satisfies
the same recurrence as the exponential sum of symmetric polynomials. In Section
4, we study the asymptotic behavior of them.

3. The linear recurrence

Let 1 ≤ k1 < · · · < ks be integers and F (X) be a binary polynomial in the
variables X1, · · · , Xj (j fixed). In this section we show that

{S(σn,k1 + · · ·+ σn,ks + F (X))}n∈N

satisfies the recurrence

(3.1) xn =

2r−1∑
m=1

(−1)m−1
(

2r

m

)
xn−m,

where r = blog2(ks)c+ 1.
We start with the following preliminary results.

Definition 3.1. For x ∈ Fn2 , let w2(x) be the Hamming weight of x, in other words,
w2(x) is the number of entries of x that are one. For example, w2((0, 1, 1, 0, 1)) = 3.
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Theorem 3.2. Suppose 1 ≤ k1 < · · · < ks are integers. Let F (X) be a binary
polynomial in the variables X1, · · · , Xj. Define

(3.2) Cm(F ) =
∑

x∈Fj
2 with w2(x)=m

(−1)F (x)

for m = 0, 1, · · · , j. Then,
(3.3)

S(σn,k1+· · ·+σn,ks+F (X)) =

j∑
m=0

Cm(F )S

(
m∑
i=0

(
m

i

)
[σn−j,k1−i + · · ·+ σn−j,ks−i]

)
.

Proof. We provide the proof of the case of one elementary symmetric polynomial,
i.e. we show that

S(σn,k + F (X)) =

j∑
m=0

Cm(F )S

(
m∑
i=0

(
m

i

)
σn−j,k−i

)

is true. The purpose of doing this is to simplify the notation and the writing of the
proof. The general case follows in a similar manner.

Recall that

S(σn,k + F (X)) =
∑
x∈Fn

2

(−1)σn,k(x)+F (x).

This can be re-written as

S(σn,k + F (X)) =
∑
x∈Fn

2

(−1)F (x)(−1)σn,k(x)

=
∑

xj
(0)
∈Fn

2

(−1)F (x)(−1)σn,k(x) +
∑

xj
(1)
∈Fn

2

(−1)F (x)(−1)σn,k(x) +(3.4)

· · ·+
∑

xj
(j)
∈Fn

2

(−1)F (x)(−1)σn,k(x),

where xj(m) represents a tuple in Fn2 that has exactly m ones in the first j entries.

Let us assign values to the first j entries of the variable X and let the rest of it
vary. Fix this assignment. Suppose it has m ones in the first j entries, i.e. the
assignment has the form

(δ1, · · · , δj , Xj+1, · · · , Xn),

where the δi ∈ {0, 1} are fixed, δ1 + · · · + δj = m, and Xj+1, · · · , Xn are binary
variables. It is not hard to see that in this case the elementary symmetric polyno-
mial σn,k gets transform to

∑m
i=0

(
m
i

)
σn−j,k−i, where the variables of σn−j,k−i are

Xj+1, · · · , Xn. Thus, for this particular assignment, we have

∑
(δ1,··· ,δj ,xj+1,··· ,xn)

(−1)F (x)(−1)σn,k(x) = (−1)F (δ1,··· ,δj)S

(
m∑
i=0

(
m

i

)
σn−j,k−i

)
.
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But this yields

∑
xj
(m)
∈Fn

2

(−1)F (x)(−1)σn,k(x) =

 ∑
x∈Fj

2 with w2(x)=m

(−1)F (x)

S

(
m∑
i=0

(
m

i

)
σn−j,k−i

)

= Cm(F )S

(
m∑
i=0

(
m

i

)
σn−j,k−i

)
.(3.5)

Note that (3.4) and (3.5) imply the theorem. �

Remark. There are three things about equation (3.3). First, note that the values
of
(
m
i

)
that are inside the exponential sum can be taken modulo two, since only

the parity matters. Second, if kl − i < 0, then the term σn−j,kl−i does not exist.
Finally, in the case that kl − i = 0, then σn−j,0 should be interpreted as 1.

Corollary 3.3. Let 1 ≤ k1 < · · · < ks be integers and F (X) a binary polynomial
in the variables X1, · · · , Xj (j fixed). Consider the sequence

(3.6) {S(σn,k1 + · · ·+ σn,ks + F (X))}n∈N
and let r = blog2(ks)c+ 1. Then, (3.6) satisfies recurrence (3.1). In particular,

(3.7) lim
n→∞

1

2n
S(σn,k1 + · · ·+ σn,ks + F (X))

exists.

Proof. Theorem 3.2 implies

S(σn,k1+· · ·+σn,ks+F (X)) =

j∑
m=0

Cm(F )S

(
m∑
i=0

(
m

i

)
[σn−j,k1−i + · · ·+ σn−j,ks−i]

)
.

However, we know that each S
(∑m

i=0

(
m
i

)
[σn−j,k1−i + · · ·+ σn−j,ks−i]

)
satisfies re-

currence (3.1), see [8] for details. Thus, S(σn,k1 + · · ·+ σn,ks + F (X)) satisfies the
same recurrence. Finally, since the biggest modulo of the roots of the characteristic
polynomials associated to (3.1) is 2 (see [8]), then

(3.8) lim
n→∞

1

2n
S(σn,k1 + · · ·+ σn,ks + F (X))

exists. �

Example 3.4. Consider the perturbation

σn,5 + σn,3 +X1X2X3X4X5X6.

Apply Theorem 3.2 to get the coefficients

C0(F ) = 1

C1(F ) = 6

C2(F ) = 15

C3(F ) = 20

C4(F ) = 15

C5(F ) = 6

C6(F ) = −1.
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Take each binomial coefficient inside the exponential sums modulo 2 to obtain

S(σn,5 + σn,3 +X1X2X3X4X5X6) = S(σn−6,5 + σn−6,5)

+6S(σn−6,5 + σn−6,4 + σn−6,3 + σn−6,2)

+15S(σn−6,5 + σn−6,1)

−20S(σn−6,5 + σn−6,4 + σn−6,1)

+15S(σn−6,5 + σn−6,3 + σn−6,1)

−6S(σn−6,5 + σn−6,4 + σn−6,3 + σn−6,2 + σn−6,1)

−S(σn−6,5).

Note that the third and fifth coefficients appear as negative instead of positive.
The reason for this is that the term σn−6,0 = 1 appears inside the corresponding
exponential sum and

S(G(X) + 1) = −S(G(X))

for any binary polynomial G.
Now, Corollary 3.3 tells us that

lim
n→∞

1

2n
S(σn,5 + σn,3 +X1X2X3X4X5X6)

exists. If fact, in the next section we show that this limit is 31/64. Below you can
see a graphical representation of this fact. The blue dots correspond to S(σn,5 +
σn,3 +X1X2X3X4X5X6)/2n. The red line correspond to y = 31/64.
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Figure 2. Graphical representation of S(σn,5 + σn,3 +X1X2X3X4X5X6)/2n.

Example 3.5. Let us go back to the sequence in Example 2.1, i.e.

{S(σn,5 +X1X2 +X1)}n∈N.

Following Theorem 3.2 with F (X) = X1X2 +X1, we get

C0(F ) = 1

C1(F ) = 0

C2(F ) = 1.

This implies that

S(σn,5 +X1X2 +X1) = S(σn−2,5) + S(σn−2,5 + σn−2,3).
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Now, using the theory presented in [8], it can be showed that both, S(σn−2,5) and
S(σn−2,5 + σn−2,3), satisfy recurrence (2.7). Since S(σn,5 +X1X2 +X1) is a linear
combination of them, then S(σn,5+X1X2+X1) satisfies the same recurrence. Also,

lim
n→∞

1

2n
S(σn,5 +X1X2 +X1) = lim

n→∞

1

2n
(S(σn−2,5) + S(σn−2,5 + σn−2,3))

= lim
n→∞

1

4

(
S(σn−2,5)

2n−2
+
S(σn−2,5 + σn−2,3)

2n−2

)
=

1

4
(c0(5) + c0(5, 3))

=
1

4

(
1

2
+

1

2

)
=

1

4
,

where the values of c0(5) and c0(5, 3) can be obtained from (2.3).

Remark. Note that Corollary 3.3 tells us that S(σn,5 + X1X2 + X1) satisfies the
recurrence

(3.9) xn = 8xn−1 − 28xn−2 + 56xn−3 − 70xn−4 + 56xn−5 − 28xn−6 + 8xn−7,

but we proved that this sequence satisfies recurrence (2.7), which has less order.
Therefore, even though Corollary 3.3 provides us with a linear recurrence for these
perturbations, this recurrence is not necessary the minimal one. It is interesting to
know what is the minimal homogeneous linear recurrence with integer coefficients
that these sequences satisfy. However, our main focus in this article is to study
the asymptotic behavior of these perturbations and knowing that they satisfy a
linear recurrence is enough. Thus, in this paper we do not consider the problem
of finding the minimal homogeneous linear recurrence with integer coefficients that
they satisfy.

4. Asymptotic behavior

In this section we study the asymptotic behavior of the exponential sum of
perturbations of type (2.5). We are interested in the question of when are these
perturbations asymptotically balanced. We start with the following example.

Example 4.1. Consider the polynomial

σn,16 +X1X2 +X3X4X5.

We already know that σn,16 is asymptotically balanced. In this case, it turns out
that the perturbation is also asymptotically balanced. In Figure 3 you can see a
graphical representation of this fact. The blue dots represent S(σn,16)/2n and the
red dots represent S(σn,16 +X1X2 +X3X4X5)/2n.

When we started the study of these perturbations, we observed that in the
particular case when a symmetric polynomial was disturbed by a linear polynomial,
i.e.

(4.1) σn,k1 + · · ·+ σn,ks +X1 + · · ·+Xj ,

the result was an asymptotically balanced function.

Example 4.2. Consider the perturbation

(4.2) σn,7 +X1 +X2 +X3.
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Figure 3. Graphical representation of S(σn,16)/2n (blue) vs
S(σn,16 +X1X2 +X3X4X5)/2n (red).

It turns out that this perturbation is asymptotically balanced, even though σn,7
is not. Figure 4 shows a graphical representation of the exponential sums of σn,7

and σn,7 + X1 + X2 + X3. The blue dots represent S(σn,7)/2n and the red dots
represent S(σn,7 +X1 +X2 +X3)/2n.
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Figure 4. Graphical representation of S(σn,7)/2n (blue) vs
S(σn,7 +X1 +X2 +X3)/2n (red).

Perturbations of the form σn,k1 + · · · + σn,ks + X1 + · · · + Xj are not the only
examples in which you start with a function that is not asymptotically balanced,
but after you perturb it the result is an asymptotically balanced function.

Example 4.3. Consider the perturbation

σn,15 +X1X2 +X1X3 +X2X3.

The polynomial σn,15 is not asymptotically balanced, but this perturbation is. This
is a striking example since the asymptotic behavior of σn,15 is close to 1, but adding
X1X2 +X1X3 +X2X3 to σn,15 makes the distribution of 0’s and 1’s close to each
other. Figure 5 is graphical representation of the exponential sums of σn,15 and
σn,15 +X1X2 +X1X3 +X2X3. The blue dots correspond to σn,15 and the red dots
to the perturbation.

The two examples above have something in common: the function F (X) is
balanced.

As we mentioned before, in Example 4.1 we start with an asymptotically bal-
anced function and after perturbation, we still get an asymptotically balanced func-
tion. In Examples 4.2 and 4.3, we start with a polynomial that is not asymptotically
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Figure 5. Graphical representation of S(σn,15)/2n (blue) vs
S(σn,15 +X1X2 +X1X3 +X2X3)/2n (red).

balanced, however, after we perturb it with a balanced function F (X), the result
is asymptotically balanced. In the theorem below we show that these are the only
ways to obtain an asymptotically balanced function. In other words, a perturbation
of the form

σn,k1 + · · ·+ σn,ks + F (X)

is asymptotically balanced if and only if σn,k1+· · ·+σn,ks is asymptotically balanced
or F (X) is balanced.

Theorem 4.4. Let 1 ≤ k1 < · · · < ks be integers and F (X) a binary polynomial
in the variables X1, · · · , Xj (j fixed). Let r = blog2(ks)c+ 1. Then,

(4.3) S(σn,k1 +· · ·+σn,ks +F (X)) = c0(k1, · · · , ks)·
S(F )

2j
2n+O

((
2 cos

( π
2r

))n)
.

In particular,

lim
n→∞

1

2n
S(σn,k1 + · · ·+ σn,ks + F (X)) = c0(k1, · · · , ks) ·

S(F )

2j
.(4.4)

Proof. We already know that

(4.5)

{
1

2n
S(σn,k1 + · · ·+ σn,ks + F (X))

}
n∈N

is a convergent sequence. The idea in this proof is to construct a subsequence of
(4.5) for which we can calculate the limit.

Define Bn ⊆ Fn to be the set of all x such that σn,k1(x) + · · · + σn,ks(x) = 1.
Note that

S(σn,k1 + · · ·+ σn,ks + F (X)) =
∑
x∈F

(−1)F (x) − 2
∑
x∈Bn

(−1)F (x)

= 2n−jS(F )− 2
∑
x∈Bn

(−1)F (x).(4.6)

Suppose that 2r−1 ≤ ks < 2r and consider the subsequence

{S(σ2rm+2r−1,k1 + · · ·+ σ2rm+2r−1,ks + F (X))}m∈N.
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It is not hard to see that

S(σ2rm+2r−1,k1 + · · ·+ σ2rm+2r−1,ks)

=

n∑
i=0

(−1)(
i

k1
)+···+( i

ks
)
(

2rm+ 2r − 1

i

)
.

Let i1, · · · , ip be all integers between 1 and 2r − 1 such that
(
il
k1

)
+ · · · +

(
il
ks

)
≡ 1

(mod 2). We know that
(
i
k1

)
+ · · · +

(
i
ks

)
(mod 2) is periodic and the period is a

divisor of 2r. Therefore,
(
i
k1

)
+ · · · +

(
i
ks

)
≡ 1 (mod 2) if and only if i ≡ il (mod

2r) for some il ∈ {i1, · · · , ip}. This implies that x ∈ F2rm+2r−1 is in B2rm+2r−1
precisely when

w2(x) ≡ il (mod 2r).

Therefore,

S(σ2rm+2r−1,k1+ · · · +σ2rm+2r−1,ks + F (X))

= 22
rm+2r−1−jS(F )− 2

p∑
l=1

∑
w2(x)≡il mod 2r

(−1)F (x).

Consider the sum ∑
w2(x)≡il mod 2r

(−1)F (x) =

m∑
q=0

∑
w2(x)=2rq+il

(−1)F (x).

Note that there are (
j

s

)(
2rm+ 2r − 1− j

2rq + il − s

)
tuples with w2(x) = 2rq + il and exactly s 1’s in the first j entries. The values of
(−1)F (X) on these tuples sum to

Cs(F )

(
2rm+ 2r − 1− j

2rq + il − s

)
.

Hence, ∑
w2(x)≡il mod 2r

(−1)F (x) =

m∑
q=0

j∑
s=0

Cs(F )

(
2rm+ 2r − 1− j

2rq + il − s

)

=

j∑
s=0

Cs(F )

m∑
q=0

(
2rm+ 2r − 1− j

2rq + il − s

)
.

Recall the series multisection for the sum of binomial coefficients [30](
n

t

)
+

(
n

t+ s

)
+

(
n

t+ 2s

)
+ · · · = 1

s

s−1∑
j=0

(
2 cos

(
πj

s

))n
cos

(
π(n− 2t)j

s

)
.

This implies that

m∑
q=0

(
2rm+ 2r − 1− j

2rq + il − s

)
=

1

2r

2r−1∑
a=0

(
2 cos

(πa
2r

))2rm+2r−1−j
cos

(
π(2rm+ 2r − 1− j − 2(il − s))a

2r

)
.

(4.7)
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Note that the biggest term of the sum above is

1

2r
· 22

rm+2r−1−j ,

and it occurs when a = 0. Moreover, all other terms in the sum are exponentially
smaller than 22

rm−1−j−r. However,∑
w2(x)≡il mod 2r

(−1)F (x) =

j∑
s=0

Cs(F )

m∑
q=0

(
2rm+ 2r − 1− j

2rq + il − s

)
(4.8)

and (4.7) implies

j∑
s=0

Cs(F )

m∑
q=0

(
2rm+ 2r − 1− j

2rq + il − s

)
=

j∑
s=0

Cs(F )22
rm−2r−1−j−r + o(22

rm+2r−1)

= 22
rm+2r−1−j−r

j∑
s=0

Cs(F ) + o(22
rm+2r−1)(4.9)

= 22
rm+2r−1−j−rS(F ) + o(22

rm+2r−1).

Equations (4.8) and (4.9) imply

lim
m→∞

1

22rm+2r−1

∑
w2(x)≡il mod 2r

(−1)F (x) = 2−j−rS(F ).

We conclude that

lim
m→∞

1

22rm+2r−1S(σ2rm+2r−1,k1 + · · ·+ σ2rm+2r−1,ks + F (X))(4.10)

= lim
m→∞

1

22rm+2r−1

22
rm+2r−1−jS(F )− 2

p∑
l=1

∑
w2(x)≡il mod 2r

(−1)F (x)


= 2−jS(F )− 2

p∑
l=1

2−j−rS(F )

= (2−j − p · 21−j−r)S(F )

= (1− p · 21−r)2−jS(F ).

Finally, it is not hard to see,

c0(k1, · · · , ks) =
1

2r

2r−1∑
i=0

(−1)(
i

k1
)+···+( i

ks
)

=
1

2r
(2r − 2p) = 1− p · 21−r.

Since {
1

22rm+2r−1S(σ2rm+2r−1,k1 + · · ·+ σ2rm+2r−1,ks + F (X))

}
m∈N

is a subsequence of

{ 1

2n
S(σn,k1 + · · ·+ σn,ks + F (X))}n∈N,
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then we conclude that

lim
n→∞

1

2n
S(σn,k1 + · · ·+ σn,ks + F (X)) = c0(k1, · · · , ks) ·

S(F )

2j
.

�

Remark. Theorem 4.4 generalizes the asymptotic version of Cusick’s conjecture, i.e.
for k not a power of two, σn,k is asymptotically not balanced. Note that when k is
not a power of two, then Theorem 4.4 implies that σn,k + F (X) is asymptotically
balanced if and only if F (X) is a balanced function.

Corollary 4.5. Suppose that 1 ≤ k1 < · · · < ks are integers and F (X) a binary
polynomials in the variables X1, · · · , Xj, with j fixed. Then, the polynomial

σn,k1 + · · ·+ σn,ks + F (X)

is asymptotically balanced if and only if σn,k1 + · · ·+σn,ks is asymptotically balanced
or F (X) is a balanced function.

Proof. This is a direct consequence of Theorem 4.4. �

Example 4.6. Consider the following perturbation (a generalization to the per-
turbation in Example 3.4),

σn,5 + σn,3 +X1X2X3 · · ·Xj .

The reader can check that

S(X1X2X3 · · ·Xj) = 2j − 2.

Also,

c0(5, 3) =
1

2
,

and so

c0(5, 3) · S(F )

2j
=

2j−1 − 1

2j
.

Theorem 4.4 tells us that

lim
n→∞

1

2n
S(σn,5 + σn,3 +X1X2X3 · · ·Xj) =

2j−1 − 1

2j
.

5. A result about binomial coefficients

In this section we present a relation between the asymptotic coefficients of sym-
metric polynomials. This relation, in turns, will provide us with a relation about
the parity of some sums of binomial coefficients.

Recall that if 1 ≤ k1 < · · · < ks and r = blog2(ks)c+ 1, then

lim
n→∞

1

2n
S(σn,k1 + · · ·+ σn,ks) = c0(k1, · · · , ks),

where

(5.1) c0(k1, · · · , ks) =
1

2r

2r−1∑
i=0

(−1)(
i

k1
)+···+( i

ks
).
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We say that the degree of the asymptotic coefficient is ks, i.e. the degree of an
asymptotic coefficient is the biggest argument. We introduce the following notation.
Consider the expression

(5.2) c0

(
k,

(
m

1

)
2

(k − 1),

(
m

2

)
2

(k − 2), · · · ,
(

m

m− 1

)
2

(k −m+ 1), k −m
)
.

We interpret
(
m
i

)
2

as (
m

i

)
mod 2.

However, if (
m

i

)
≡ 0 mod 2,

then the term
(
m
i

)
2
(k − i) is not an argument of c0. For example,

c0

(
k,

(
3

1

)
2

(k − 1),

(
3

2

)
2

(k − 2), k − 3

)
= c0(k, k − 1, k − 2, k − 3)

c0

(
k,

(
4

1

)
2

(k − 1),

(
4

2

)
2

(k − 2),

(
4

3

)
2

(k − 3), k − 4

)
= c0(k, k − 4).

We now present one of the main results of this section.

Theorem 5.1. Suppose that k ≥ 2 be an integer and let m < k. Then,

c0(k) = c0

(
k,

(
m

1

)
2

(k − 1),

(
m

2

)
2

(k − 2), · · · ,
(

m

m− 1

)
2

(k −m+ 1), k −m
)
.

Proof. Apply Theorem 3.2 with F (X) = X1 + · · ·+Xj to get

S(σn,k +X1 + · · ·+Xj) =

j∑
l=0

(−1)l
(
j

l

)
S

(
l∑
i=0

(
l

i

)
σn−j,k−i

)
.

Divide each side of the above equation by 2n, let n→∞, use the fact that F (X) =
X1 + · · ·+Xj is balanced, and apply Theorem 4.4 to get

(5.3) 0 =
1

2j

j∑
l=0

(−1)l
(
j

l

)
c0

(
k,

(
l

1

)
2

(k − 1), · · · ,
(

l

l − 1

)
2

(k − l + 1), k − l
)
.

We use (5.3) to prove the theorem by induction.
Suppose that m = 1. Note that if j = 1, then (5.3) implies 0 = c0(k)−c0(k, k−1).

Therefore, the theorem is true if m = 1. Suppose the theorem holds for j ≤ m− 1,
that is

c0(k) = c0(k, k − 1) = c0(k, k − 2) = · · ·

= c0

(
k,

(
m− 1

1

)
2

(k − 1),

(
m− 1

2

)
2

(k − 2), · · · ,
(
m− 1

m− 2

)
2

(k −m+ 2), k −m+ 1

)
.

Let j = m. Then,

0 =
1

2m

m∑
l=0

(−1)l
(
m

l

)
c0

(
k,

(
l

1

)
2

(k − 1), · · · ,
(

l

l − 1

)
2

(k − l + 1), k − l
)
.
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This equivalent to

0 =

m−1∑
l=0

(−1)l
(
m

l

)
c0

(
k,

(
l

1

)
2

(k − 1), · · · ,
(

l

l − 1

)
2

(k − l + 1), k − l
)

+(−1)mc0

(
k,

(
m

1

)
2

(k − 1), · · · ,
(

m

l − 1

)
2

(k −m+ 1), k −m
)
.

Apply the induction hypothesis to get

0 =

m−1∑
l=0

(−1)l
(
m

l

)
c0 (k)

+(−1)mc0

(
k,

(
m

1

)
2

(k − 1), · · · ,
(

m

l − 1

)
2

(k −m+ 1), k −m
)

= (−1)m−1c0(k) + (−1)mc0

(
k,

(
m

1

)
2

(k − 1), · · · ,
(

m

l − 1

)
2

(k −m+ 1), k −m
)
.

We conclude that

c0(k) = c0

(
k,

(
m

1

)
2

(k − 1), · · · ,
(

m

l − 1

)
2

(k −m+ 1), k −m
)

and the theorem holds. �

Therem 5.1 can be generalized. We first extend the definition of c0(k1, · · · , ks),
which is originally defined for 1 ≤ k1 < · · · < ks. Note that if we allow k1 to be
zero, then, by definition (5.1), we obtain

(5.4) c0(0, k2, · · · , ks) = −c0(k2, · · · , ks).
This is consistent with the interpretation σn,0 = 1 and S(G(X) + 1) = −S(G(X)).
Moreover, if we allow some (not all) of the ki to be negative, let say k1 < k2 <
· · · < kj < 0 < kj+1 < · · · ks, then (5.1) implies

(5.5) c0(k1, · · · , kj , kj+1, · · · , ks) = c0(kj+1, · · · , ks).
This is consistent with the fact that if k1 < k2 < · · · < kj < 0 < kj+1 < · · · ks, then
σn,k1 + · · · + σn,kj + σn,kj+1

+ · · · + σn,ks = σn,kj+1
+ · · · + σn,ks , since the terms

σn,k1 , · · · , σn,kj do not exist.
Also, repetitions can be allowed. Let say that k1 = k2, then (5.1) implies

(5.6) c0(k1, k1, k3, · · · , ks) = c0(k3, · · · , ks).
This is consistent with the fact that

S(2σn,k1 + σn,k3 + · · ·+ σn,ks) = S(σn,k3 + · · ·+ σn,ks).

The same happens if one of the ki’s is repeated an even amount of times (as an
argument of c0). On the other hand, if one of the ki’s is repeated an odd amount
of times, say k1 = k2 = k3, then

(5.7) c0(k1, k1, k1, k4 · · · , ks) = c0(k1, k4, · · · , ks).
This is consistent with the fact that

S(3σn,k1 + σn,k4 + · · ·+ σn,ks) = S(σn,k1 + σn,k4 + · · ·+ σn,ks).

In summary, if ki is repeated an even amount of times, then we drop it from the
arguments. On the other hand, if ki is repeated an odd amount of times, then we
leave it as an argument, but we only write it once.
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We are now in position of providing a generalization of Theorem 5.1. But, before
doing this, we introduce yet another notation. We write [ai]

n
i=1 to represent the list

a1, a2, · · · , an. In other words,

[ai]
n
i=1 = a1, a2, · · · , an.

For example,

[i2]4i=1 = 1, 4, 9, 16

[2i+ 1]5i=1 = 3, 5, 7, 9, 11

[bi]
3
i=1 = b1, b2, b3.

Next, is a generalization of Theorem 5.1.

Theorem 5.2. Suppose that 1 ≤ k1 < · · · < ks and m be any positive integer.
Then,

c0(k1, · · · , ks) =

c0

(
[ki]

s
i=1,

[(
m

1

)
2

(ki − 1)

]s
i=1

, · · · ,
[(

m

m− 1

)
2

(ki −m+ 1)

]s
i=1

, [ki −m]si=1

)
.

Proof. The proof is basically the same induction as in the proof of Theorem 5.1.
The only difference is that now we use the interpretations (5.4), (5.5), (5.6), and
(5.7). �

Remark. Theorems 5.1 and 5.2 provide a method to compute the asymptotic be-
havior for all the symmetric boolean functions of degree ks from only knowing few
of them. See next examples.

Example 5.3. Consider the case when the degree is 3. In this case, Theorems 5.1
and 5.2 imply

c0(3) = c0(3, 2)

c0(3) = c0

(
3,

(
2

1

)
2

· 2, 1
)

= c0(3, 1)

c0(3) = c0

(
3,

(
3

1

)
2

· 2,
(

3

2

)
2

· 1, 0
)

= c0(3, 2, 1, 0) = −c0(3, 2, 1).

This covers all cases. Since c0(3) = 1/2, then we conclude that c0(3, 2) = c0(3, 1) =
1/2 and c0(3, 2, 1) = −1/2.

Example 5.4. Consider now the case when the degree is 5. In this case, there are
16 asymptotic coefficients. We only need to know two of them in order to get the
rest. Start with c0(5) = 1/2 and apply Theorems 5.1 and 5.2 to get

when m = 1 : c0(5) = c0(5, 4)

when m = 2 : c0(5) = c0(5, 3)

when m = 3 : c0(5) = c0(5, 4, 3, 2)

when m = 4 : c0(5) = c0(5, 1)

when m = 5 : c0(5) = c0(5, 4, 1, 0) = −c0(5, 4, 1)

when m = 6 : c0(5) = c0(5, 3, 1,−1) = c0(5, 3, 1)

when m = 7 : c0(5) = c0(5, 4, 3, 2, 1, 0,−1,−2) = −c0(5, 4, 3, 2, 1).
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The reader can check that these are all the asymptotic coefficients that can be
obtained from c0(5), i.e. m ≥ 8 produces a coefficient that is already listed above.
To proceed, now choose a coefficient that is not listed above, let say c0(5, 4, 3) = 0.
Apply Theorem 5.2 to get

when m = 1 : c0(5, 4, 3) = c0(5, 4, 4, 3, 3, 2) = c0(5, 2)

when m = 2 : c0(5, 4, 3) = c0(5, 3, 4, 2, 3, 1) = c0(5, 4, 2, 1)

when m = 3 : c0(5, 4, 3) = c0(5, 4, 3, 2, 4, 3, 2, 1, 3, 2, 1, 0) = −c0(5, 3, 2)

when m = 4 : c0(5, 4, 3) = c0(5, 1, 4, 0, 3,−1) = −c0(5, 4, 3, 1)

when m = 5 : c0(5, 4, 3) = c0(5, 4, 1, 0, 4, 3, 0,−1, 3, 2,−1,−2) = c0(5, 2, 1)

when m = 6 : c0(5, 4, 3) = c0(5, 3, 1,−1, 4, 2, 0,−2, 3, 1,−1,−3) = −c0(5, 4, 2)

when m = 7 : c0(5, 4, 3) = c0(5, 4, 3, 2, 1, 0,−1,−2, 4, 3, 2, 1, 0,−1,−2,−3, 3, 2, 1, 0,−1,−2,−3,−4)

= −c0(5, 3, 2, 1).

This completes the list of all asymptotic coefficients.

Remark. It turns out that, using our method, all the 32 asymptotic coefficients of
degree 6 can be obtained from c0(6), c0(6, 5, 4), c0(6, 5, 3), and c0(6, 5, 2). It appears
that the amount of asymptotic coefficients needed for our method to compute all
asymptotic coefficients of degree ks grows exponentially in ks.

Theorems 5.1 and 5.2 also provide us with a relationship between some sums
of binomial coefficients. Suppose that 1 ≤ k1 < · · · < ks and r = blog2(ks)c + 1.
Recall that

c0(k1, · · · , ks) =
1

2r

2r−1∑
i=0

(−1)(
i

k1
)+···+( i

ks
).

Note that c0(k1, · · · , ks) counts the number of times
(
i
k1

)
+ · · ·+

(
i
ks

)
is odd when

i runs from 0 to 2r − 1. This has the following implication.

Theorem 5.5. Let 1 ≤ k1 < · · · < ks and r = blog2(ks)c + 1. If two asymptotic
coefficients of degree ks are equal, say c0(kl1 , kl2 , · · · , ks) = c0(kj1 , kj2 , · · · , ks), then
both lists [(

i

kl1

)
+

(
i

kl2

)
+ · · ·+

(
i

ks

)]2r−1
i=0

and [(
i

kj1

)
+

(
i

kj2

)
+ · · ·+

(
i

ks

)]2r−1
i=0

have the same amount of odd numbers. On the other hand, if c0(kl1 , kl2 , · · · , ks) =
−c0(kj1 , kj2 , · · · , ks), then the amount of odd numbers in[(

i

kl1

)
+

(
i

kl2

)
+ · · ·+

(
i

ks

)]2r−1
i=0

is the same as the amount of even numbers in[(
i

kj1

)
+

(
i

kj2

)
+ · · ·+

(
i

ks

)]2r−1
i=0

and viceversa.

Proof: This is a direct consequence of Theorems 5.1 and 5.2.
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Remark. Lucas’ Theorem can be used to obtain the parity of a binomial coefficient.
However, our method avoids the difficulty of the calculation of the parity of each
individual binomial coefficient to obtain the result of Theorem 5.5.

Example 5.6. Consider the case of degree 5. The complete list of asymptotic
coefficients of degree five appears in Example 5.4. Note that c0(5, 4, 3, 2) = c0(5, 1).

Therefore, the lists
[(
i
5

)
+
(
i
4

)
+
(
i
3

)
+
(
i
2

)]7
i=0

and
[(
i
5

)
+
(
i
1

)]7
i=0

contain the same

amount of odd numbers (which in this case is 2):[(
i

5

)
+

(
i

4

)
+

(
i

3

)
+

(
i

2

)]7
i=0

= 0, 0, 1, 4, 11, 26, 56, 112[(
i

5

)
+

(
i

1

)]7
i=0

= 0, 1, 2, 3, 4, 6, 12, 28.

We also know that c0(5, 4, 3, 2) = −c0(5, 4, 3, 2, 1). Therefore, the amount of odd

numbers in
[(
i
5

)
+
(
i
4

)
+
(
i
3

)
+
(
i
2

)
+
(
i
1

)]7
i=0

is the same as the amount of even num-

bers in
[(
i
5

)
+
(
i
4

)
+
(
i
3

)
+
(
i
2

)]7
i=0

, which in this case is 6:[(
i

5

)
+

(
i

4

)
+

(
i

3

)
+

(
i

2

)
+

(
i

1

)]7
i=0

= 0, 1, 3, 7, 15, 31, 62, 119.
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