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Abstract. Rotation symmetric Boolean functions are invariant under circular translation of indices. These

functions have very rich cryptographic properties and have been used in different cryptosystems. Recently,

Thomas Cusick proved that exponential sums of rotation symmetric Boolean functions satisfy homogeneous
linear recurrences with integer coefficients. In this work, a generalization of this result is proved over any

Galois field. That is, exponential sums over Galois fields of rotation symmetric polynomials satisfy linear
recurrences with integer coefficients. In the particular case of F2, an elementary method is used to obtain

explicit recurrences for exponential sums of some of these functions. The concept of trapezoid Boolean

function is also introduced and it is showed that the linear recurrences that exponential sums of trapezoid
Boolean functions satisfy are the same as the ones satisfied by exponential sums of the corresponding rota-

tions symmetric Boolean functions. Finally, it is proved that exponential sums of trapezoid and symmetric

polynomials also satisfy linear recurrences with integer coefficients over any Galois field Fq . Moreover, the
Discrete Fourier Transform matrix and some Complex Hadamard matrices appear as examples in some of

our explicit formulas of these recurrences.

1. Introduction

A Boolean function is a function from the vector space Fn2 to F2. Boolean functions are part of a beautiful
branch of combinatorics with applications to many scientific areas. Some particular examples are the areas
of theory of error-correcting codes and cryptography. Efficient cryptographic implementations of Boolean
functions with many variables is a challenging problem due to memory restrictions of current technology.
Because of this, symmetric Boolean functions are good candidates for efficient implementations. However,
symmetry is too special a property and may imply that these implementations are vulnerable to attacks.

In [19], Pieprzyk and Qu introduced rotation symmetric Boolean functions. As in the case of symmetric
Boolean functions, these functions turned out to be good candidates for efficient implementations. However,
Pieprzyk and Qu showed that these functions are useful in the design of fast hashing algorithms with strong
cryptographic properties. This work sparked interest in these functions and today their study is an active
area of research [3, 10, 12, 13, 14, 16, 21, 22].

In some applications related to cryptography it is important for Boolean functions to be balanced. A
balanced Boolean function is one for which the number of zeros and the number of ones are equal in its truth
table. Let F (X) be a Boolean function. List the elements of Fn2 in lexicographic order and label them as
x0 = (0, 0, · · · , 0), x1 = (0, 0, · · · , 1) and so on. The vector (F (x0), F (x1), · · · , F (x2n−1)) is called the truth
table of F .

Balancedness of Boolean functions can be studied from the point of view of Hamming weights. The
Hamming weight of F , denoted by wt(F ), is the number of 1’s in the truth table of F . Observe that a
Boolean function in n variables is balanced if and only if its Hamming weight is 2n−1. The study of weights
of rotations symmetric Boolean functions has received some attention lately [3, 10, 12, 21]. In particular,
it has been observed that weights of cubic rotation symmetric Boolean functions are linear recursive with
constant coefficients [3, 10]. Recently, Cusick [9] showed that weights of any rotation symmetric Boolean
function satisfy linear recurrences with integer coefficients. In this work, we generalize this result to other
characteristics.
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Balancedness of Boolean functions can also be linked to exponential sums. The exponential sum of an
n-variable Boolean function F (X) is defined as

(1.1) S(F ) =
∑
x∈Fn2

(−1)F (x).

Observe that a Boolean function F (X) is balanced if and only if S(F ) = 0. This gives importance to the
study of exponential sums in this context. This point of view is also a very active area of research. For some
examples, please refer to [1, 2, 5, 6, 7, 8, 15, 17, 18, 20].

Exponential sums over finite fields have been useful in mathematics since many problems can be formulated
in terms of these sums. Some very well-known examples of exponential sums include the number-theoretical
Gauss sums, Kloosterman sums, and Weyl sums. Our general goal is to better understand the behavior of
exponential sums. We hope this will bring understanding to many problems in areas like analytic number
theory.

The Hamming weight of a Boolean function F and its exponential sums are related by the equation

(1.2) wt(F ) =
2n − S(F )

2
.

Equation (1.2) implies that exponential sums of rotation symmetric Boolean functions also satisfy linear
recurrences with integer coefficients.

A natural question to ask is if Cusick’s result holds true in the general setting of exponential sums over
finite fields or if it is just a particular result for the Boolean case. One of the most important results in this
work is a generalization of Cusick’s result over any Galois field. To be specific, let q = pr with p prime and
r ≥ 1. Exponential sums over Fq of monomial rotation symmetric polynomials (and linear combinations
of them) satisfy homogeneous linear recurrences with integer coefficients. Remarkably, this can be proved
by elementary means. Another important result included in this work is that exponential sums over Fq
of elementary symmetric polynomials and linear combinations of them also satisfy linear recurrences with
integer coefficients. Surprisingly, the Discrete Fourier Transform matrix, some Complex Hadamard matrices
and the quadratic Gauss sum mod p appear in the study of the recurrences considered in this work.

This article is divided as follows. The next section includes some preliminary definitions. Section 3 is an
introduction to the elementary method used to obtain the recurrences. This introduction is done over F2

in order to solidify the intuition. The reader interested in the generalization is invited to skip this section,
however, he or she is encouraged to read the definition of trapezoid functions, as they are used through out the
article. In section 4, linear recurrences with integer coefficients are obtained for exponential sums trapezoid
functions over Galois fields. Moreover, it is in this section where it is proved that exponential sums over
Fq of monomial rotation symmetric polynomials and linear combinations of them satisfy linear recurrences
with integer coefficients. The same technique is used in the section 5 to prove that exponential sums over Fq
of elementary symmetric polynomials and linear combinations of them also satisfy linear recurrences with
integer coefficients. Finally, in the last section, some conjectures about the initial conditions of some of the
sequences considered in this work are presented.

2. Preliminaries

As mentioned in the introduction, Pieprzyk and Qu ([19]) introduced rotation symmetric Boolean func-
tions. A rotation symmetric Boolean function in n variables is a function which is invariant under the action
of the cyclic group Cn on the set Fn2 . Let us explain this definition in a more concrete way. Our explanation
is similar to the one presented in [21].

Let Xi ∈ F2 for 1 ≤ i ≤ n. Define, for 1 ≤ k ≤ n, the shift function

(2.1) Ekn(Xi) =

{
Xi+k if i+ k ≤ n,
Xi+k−n if i+ k > n.

Extend this definition to Fn2 by defining

(2.2) Ekn(X1, X2, · · · , Xn) = (Ekn(X1), Ekn(X2), · · · , Ekn(Xn)).

The shift function Ekn can also be extended to monomials via

(2.3) Ekn(Xi1Xi2 · · ·Xit) = Ekn(Xi1)Ekn(Xi2), · · ·Ekn(Xit).
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A Boolean function F (X) in n variables is a rotation symmetric Boolean function if and only if for any
(X1 · · · , Xn) ∈ Fn2 ,

(2.4) F (Ekn(X1 · · · , Xn)) = F (X1 · · · , Xn)

for every 1 ≤ k ≤ n. Pieprzyk and Qu showed that these functions are useful in the design of fast hashing
algorithms with strong cryptographic properties. This work sparked interest in these functions and today
their study is an active area of research [3, 10, 12, 13, 14, 16, 21, 22].

Every Boolean function in n variables can be identified with a multi-variable Boolean polynomial. This
polynomial is known as the algebraic normal form (ANF for short) of the Boolean function. The degree of
a Boolean function F (X) is the degree of its ANF. The ANF of a rotation symmetric Boolean function is
very well-structured. For example, suppose we have a rotation symmetric Boolean function in 5 variables.
Suppose that X1X2X3 is part of the ANF of the function. Then, the terms

E1
5(X1X2X3) = X2X3X4(2.5)

E2
5(X1X2X3) = X3X4X5

E3
5(X1X2X3) = X4X5X1

E4
5(X1X2X3) = X5X1X2

are also part of its ANF. Similarly, suppose that X1X3 is also a term of the ANF. Then,

X2X4, X3X5, X4X1, X5X2

are also part of the ANF. An example of a rotation symmetric Boolean function with this property is given
by

R(X) = X1X2X3 +X2X3X4 +X3X4X5 +X4X5X1 +X5X1X2 +(2.6)

X1X3 +X2X4 +X3X5 +X4X1 +X5X2.

Therefore, once a monomial Xi1 · · ·Xit is part of the ANF of a rotation symmetric Boolean function, so
is Ekn(Xi1 · · ·Xit) for all 1 ≤ k ≤ n. This implies that the information encoded in the ANF of a rotation
symmetric Boolean function can be obtained with minimal information. This minimal information is known
in the literature as the short algebraic normal form (or SANF). Please refer to [21] for more details.

Let 1 < j1 < · · · < js be integers. A rotation symmetric Boolean function of the form

(2.7) Rj1,··· ,js(n) = X1Xj1 · · ·Xjs +X2Xj1+1 · · ·Xjs+1 + · · ·+XnXj1−1 · · ·Xjs−1,

where the indices are taken modulo n and the complete system of residues is {1, 2, · · · , n}, is called a
(long cycle) monomial rotation symmetric Boolean function. For example, the rotation symmetric Boolean
function (2.6) is given by

(2.8) R(X) = R2,3(5) +R3(5).

Sometimes the notation (1, j1, · · · , js)n is used to represent the monomial rotation Boolean function (2.7),
see [9].

As mentioned in the introduction, in this work we generalize Cusick’s result over any Galois field. In
particular, we show that exponential sums over finite fields of rotation symmetric polynomials are linear
recurrent with integer coefficients. The exponential sum of a function F : Fnq → Fq is given by

(2.9) SFq (F ) =
∑
x∈Fnq

e
2πi
p TrFq/Fp (F (x)).

Here, TrFq/Fp represents the field trace function from Fq to Fp.
Exponential sums are very rich objects in the area of analytic number theory. Some well-known examples

of exponential sums are special cases of definition (2.9). For example, let p be a prime. If F (X) = aX2 with
a ∈ Fp, then

(2.10) SFp(F ) =

p−1∑
k=0

e2πiak2/p = g(a; p),
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where g(a; p) represents the quadratic Gauss sum mod p. On the other hand, if F (X) = aX with a ∈ Fp,
then

(2.11) SFp(F ) =

p−1∑
k=0

e2πiak/p = 1 + cp(a),

where cp(a) represents the Ramanujan’s sum. Finally, if q = pr and F (X) = Xd+aX where gcd(d, pr−1) = 1
and a ∈ Fq, then

(2.12) SFq (F ) =
∑
x∈Fq

e
2πi
p TrFq/Fp (xd+ax) = Wq,d(a),

where Wq,d(a) represents a Weil sum.
In the next section we provide an introduction to the elementary method used in this article to obtain

linear recurrences for this type of exponential sums. As mentioned before, this introduction is done over F2.
The reader interested in the generalization is invited to skip this section and go directly to section 4.

3. Linear recurrences over F2

As mentioned in the introduction, Cusick [9] recently showed that exponential sums of rotation symmetric
Boolean functions satisfy homogeneous linear recurrences with integer coefficients. This fact was suggested
by some previous works on the subject. For example, in [12], Cusick and Stǎnicǎ provided a linear recursion
for the sequence of weights for the monomial rotation function (1, 2, 3)n. This recursion, however, was not
homogeneous, but it could be transformed into a homogeneous one, see [3]. Later, Cusick and Johns [10]
provided recursions for weights of cubic rotation symmetric Boolean functions.

In this section we use elementary machinery to provide explicit homogeneous linear recurrences with
integer coefficients for exponential sums of some rotation symmetric Boolean functions. The idea is to
show that exponential sums of rotation symmetric Boolean functions satisfy the same linear recurrences of
exponential sums of trapezoid Boolean functions (see definition below). As just mentioned, we prove this fact
using elementary machinery and, at this early stage, without the use linear algebra. In the next section we
show that exponential sums of rotation symmetric functions over any Galois field satisfy linear recurrences.
The reader interested in this generalization may skip this section, but not before reading the definition of
trapezoid functions.

Define the trapezoid Boolean function in n variables of degree k as

(3.1) τn,k =

n−k+1∑
j=1

XjXj+1 · · ·Xj+k−1.

For example,

τ7,3 = X1X2X3 +X2X3X4 +X3X4X5 +X4X5X6 +X5X6X7

τ6,4 = X1X2X3X4 +X2X3X4X5 +X3X4X5X6.

The name trapezoid comes from counting the number of times each variable appears in the function τn,k. For
example, consider τ7,3. Observe that X1 appears 1 time in τ7,3, X2 appears 2 times, X3, X4 and X5 appears
3 times each, X6 appears twice, and X7 appears once. Plotting the these values and connecting the dots
produces the shape of an isosceles trapezoid. The opposite is also true, that is, for every isosceles trapezoid
that can be constructed by steps of length at most 1, one can construct a trapezoid Boolean function.

It turns out that sequences of exponential sums of trapezoid Boolean functions of fixed degree satisfy
homogeneous linear recurrences with integer coefficients. These linear recurrences are the same ones satisfied
by sequences of exponential sums of (1, 2, · · · , k)-rotation symmetric Boolean functions. Remarkably, this
fact can be proved by elementary means by “playing” a simple game of turning ON and OFF some of the
variables. Given a Boolean variable Xi, we say that it is turned OFF if Xi assumes the value 0 and turned
ON if the variable assumes the value 1. In other words, each Boolean variable represents a “switch” with
two options: 0 (OFF) and 1 (ON).

We start the discussion with the recurrence for exponential sums of trapezoid Boolean functions.
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Theorem 3.1. The sequence {S(τn,k)}∞n=k satisfies a homogeneous linear recurrence with integer coefficients
whose characteristic polynomial is given by

(3.2) pk(X) = Xk − 2(Xk−2 +Xk−3 + · · ·+X + 1).

Proof. For the sake of simplicity, we present, in detail, the proof for the cases k = 3 and k = 4. The general
case becomes clear after that. Moreover, the complete proof of a generalization of this theorem over any
Galois field is presented in section 4.

Start with the case k = 3. Observe that by turning Xn OFF and ON we get the identity

(3.3) S(τn,3) = S(τn−1,3) + S(τn−1,3 +Xn−2Xn−1).

Consider now S(τn−1,3 +Xn−2Xn−1). Turn Xn−1 OFF and ON to get

(3.4) S(τn−1,3 +Xn−2Xn−1) = S(τn−2,3) + S(τn−2,3 +Xn−2 +Xn−3Xn−2).

Finally, turn Xn−2 OFF and ON to get

(3.5) S(τn−2,3 +Xn−2 +Xn−3Xn−2) = S(τn−3,3)− S(τn−3,3 +Xn−3 +Xn−4Xn−3).

The last equation is equivalent (after relabeling) to

(3.6) S(τn,3) = S(τn+1,3 +Xn+1 +XnXn+1) + S(τn,3 +Xn +Xn−1Xn).

Observe that equations (3.3) and (3.4) can be combined to obtain

(3.7) S(τn,3) = S(τn−1,3) + S(τn−2,3) + S(τn−2,3 +Xn−2 +Xn−3Xn−2).

Let an,3 = S(τn,3 + Xn + Xn−1Xn). Note that (3.6) implies that S(τn,3) = an+1,3 + an,3. Therefore, (3.7)
can be re-written as

(an+1,3 + an,3) = (an,3 + an−1,3) + (an−1,3 + an−2,3) + an−2,3,(3.8)

which is equivalent to

(3.9) an+1,3 = 2an−1,3 + 2an−2,3.

This implies that {an,3} satisfies the linear recurrence whose characteristic polynomial is given by p3(X).
Since S(τn,3) = an+1,3 + an,3, then {S(τn,3)} also satisfies such recurrence and the result holds for k = 3.

Consider now the case when k = 4. As it was done in the case when k = 3, turning OFF and ON several
variables leads to

S(τn,4) = S(τn−1,4) + S(τn−2,4) + S(τn−3,4)(3.10)

+S(τn−3,4 +Xn−3 +Xn−4Xn−3 +Xn−5Xn−4Xn−3)

and

S(τn,4) = S(τn+1,4 +Xn+1 +XnXn+1 +Xn−1XnXn+1)(3.11)

+S(τn,4 +Xn +Xn−1Xn +Xn−2Xn−1Xn).

Now let an,4 = S(τn,4 +Xn +Xn−1Xn +Xn−2Xn−1Xn) and observe that (3.10) can be re-written as

(3.12) (an+1,4 + an,4) = (an,4 + an−1,4) + (an−1,4 + an−2,4) + (an−2,4 + an−3,4) + an−3,4,

which is equivalent to

(3.13) an+1,4 = 2an−1,4 + 2an−2,4 + 2an−3,4.

Therefore, {an,4} satisfies the linear recurrence whose characteristic polynomial is given by p4(X). Since
S(τn,4) = an+1,4 + an,4, then {S(τn,4)} also satisfies such recurrence and the result also holds for k = 4.

In general, S(τn,k) can be expressed as

S(τn,k) =

k−1∑
i=1

S(τn−i,k) + S

τn−k+1,k +

k−2∑
j=0

j∏
i=0

Xn−k+1−i

(3.14)

and as

S(τn,k) = S

τn+1,k +

k−2∑
j=0

j∏
i=0

Xn+1−i

+ S

τn,k +

k−2∑
j=0

j∏
i=0

Xn−i

 .(3.15)
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Combine these equations and proceed as before to obtain the result. This concludes the proof. �

It turns out that the sequence of exponential sums of (1, 2, · · · , k)-rotation symmetric Boolean functions,
that is, of R2,3,··· ,k(n), also satisfies the linear recurrence whose characteristic polynomial is given pk(X).
This is a well-known result for the case when k = 3 ([3, 10]), but, to the knowledge of the authors, the closed
formula for the general case is new. Before proving that {S(R2,3,··· ,k(n))} satisfies the linear recurrence with
characteristic polynomial pk(X), we show an auxiliary result which can be proved using the same arguments
as in the proof of Theorem 3.1.

Lemma 3.2. Let τn,k be the trapezoid Boolean function of degree k in n variables. Suppose that F (X) is a
Boolean polynomial in the first j variables with j < k. Then, the sequences

{S(τn,k + F (X))}

and

{S(τn,k + F (X) +Xn +XnXn−1 +XnXn−1Xn−2 + · · ·+XnXn−1 · · ·Xn−k+2)}

satisfies the linear recurrence whose characteristic polynomial is given by pk(X).

Proof. The proof of this result follows the same argument of the proof of Theorem 3.1. �

Theorem 3.1 and Lemma 3.2 is all that is needed to show that the sequence of exponential sums of
(1, 2, · · · , k)-rotation symmetric Boolean functions satisfies the linear recurrence with characteristic polyno-
mial pk(X).

Theorem 3.3. The sequence {S(R2,3,··· ,k(n))} satisfies the homogeneous linear recurrence whose character-
istic polynomial is given by pk(X).

Proof. This result can also be proved by turning OFF and ON several variables. As before, we provide the
proof for the case when k = 4. The general case follows the same argument.

To start the argument, turn OFF and ON the variable Xn to get

(3.16) S(R2,3,4(n)) = S(τn−1,4) + S(τn−1,4 +X1X2X3 +X1X2Xn−1 +X1Xn−2Xn−1).

Consider the second term of the right hand side of this equation. Turn Xn−1 OFF and ON to get

S(τn−1,4 +X1X2X3 +X1X2Xn−1 +X1Xn−2Xn−1)(3.17)

= S(τn−2,4 +X1X2X3)

+ S(τn−2,4 +X1X2 +X1X2X3 +X1Xn−2 +Xn−3Xn−2 +Xn−4Xn−3Xn−2).

Again, consider the second term of the right hand side of equation (3.17). Turn Xn−2 OFF and ON to get

S(τn−2,4 +X1X2 +X1X2X3 +X1Xn−2 +Xn−3Xn−2 +Xn−4Xn−3Xn−2)(3.18)

= S(τn−3,4 +X1X2 +X1X2X3)

+ S(τn−3,4 +X1 +X1X2 +X1X2X3 +Xn−3 +Xn−4Xn−3 +Xn−5Xn−4Xn−3).

Equations (3.16), (3.17) and (3.18) lead to the equation

S(R2,3,4(n)) = S(τn−1,4) + S(τn−2,4 +X1X2X3) + S(τn−3,4 +X1X2 +X1X2X3)(3.19)

+ S(τn−3,4 +X1 +X1X2 +X1X2X3 +Xn−3 +Xn−4Xn−3 +Xn−5Xn−4Xn−3).

Theorem 3.1 and Lemma 3.2 imply that {S(τn−1,4)}, {S(τn−2,4 +X1X2X3)}, {S(τn−3,4 +X1X2 +X1X2X3)}
and

{S(τn−3,4 +X1 +X1X2 +X1X2X3 +Xn−3 +Xn−4Xn−3 +Xn−5Xn−4Xn−3)}

satisfy the linear recurrence whose characteristic polynomial p4(X). Since {S(R2,3,4(n))} is a linear combi-
nation of them, then the result holds when k = 4.
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In general, S(R2,3,··· ,k(n)) can be expressed as

S(R2,3,··· ,k(n)) = S(τn−1,k) +

k−3∑
m=0

S

τn−2−m,k +

m∑
j=0

k−1−j∏
i=1

Xi

(3.20)

+ S

τn−k+1,k +

k−1∑
j=1

(
j∏
i=1

Xi +

j−1∏
i=0

Xn−k+1−i

)
Invoke Theorem 3.1 and Lemma 3.2 to get the result. This concludes the proof. �

The same technique can be applied to find linear recurrences of exponential sums other rotations. Recall
that

(3.21) Rj1,··· ,js(n) = X1Xj1 · · ·Xjs +X2Xj1+1 · · ·Xjs+1 + · · ·+XnXj1−1 · · ·Xjs−1,

where the indices are taken modulo n and the complete system of residues is {1, 2, · · · , n}. We define the
equivalent of the trapezoid Boolean function for Rj1,··· ,js(n) as

(3.22) Tj1,··· ,js(n) = X1Xj1 · · ·Xjs +X2Xj1+1 · · ·Xjs+1 + · · ·+Xn+1−jsXj1+n−js · · ·Xjs−1+n−jsXn.

For instance, under this notation one has

(3.23) τn,k = T2,3,··· ,k(n).

It turns out that for k ≥ 4, the sequences {S(R2,3,··· ,k−2,k(n))} and {S(R2,3,··· ,k−2,k+1(n))} both satisfy the
linear recurrence whose characteristic polynomial is

(3.24) qk(X) = Xk+1 − 2Xk−1 − 2Xk−2 − · · · − 2X3 − 4.

As just mentioned, this can be proved by playing a game of turning ON and OFF some variables. However,
the process becomes somewhat tedious at a very early stage.

Other examples on which this elementary method can be used to find explicit formulas for linear recur-
rences include the sequence

(3.25) {S(R2,3,··· ,k(n) +R2,3,··· ,k−1(n))},

which satisfies the linear recurrence with characteristic polynomial

(3.26) Xk − 2Xk−1 + 2,

the sequence

(3.27) {S(R2,3,··· ,k−1,k(n) +R2,3,··· ,k−2,k(n))},

which satisfies the linear recurrence with characteristic polynomial

(3.28) Xk − 2Xk−1 + 2X − 2,

and the sequence

(3.29) {S(R2,3,··· ,k−2,k(n) +R2,3,··· ,k−1(n) +R2,3,··· ,k(n))},

which satisfies the linear recurrence with characteristic polynomial

(3.30) Xk − 2(Xk−2 +Xk−3 + · · ·+X2 + 1).

However, the process is somewhat tedious to be done by hand. Automatization seems to be the way to go.
The reader is invited to read Cusick’s work [9], which includes a Mathematica code that calculates a linear
recurrences for the weights of a given rotation.
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4. Linear recurrences over Fq
In this section we show that Cuscik’s result is not unique to the Boolean case. In fact, exponential

sums over finite fields of rotation polynomials satisfy linear recurrences with constant coefficients. This is a
generalization of Cusick’s result.

Consider the Galois field Fq = {0, α1, · · · , αq−1} where q = pr with p prime and r ≥ 1. The recall that
the exponential sum of a function F : Fnq → Fq is given by

(4.1) SFq (F ) =
∑
x∈Fnq

e
2πi
p TrFq/Fp (F (x)),

where TrFq/Fp represents the field trace function from Fq to Fp. The same technique used for exponential
sums of Boolean functions can be used in general. However, instead of having two options for the “switch”,
we now have q of them. Let X be a variable which takes values on Fq. As before, we say that the variable
X can be turned OFF or ON, however, this time the term “turn OFF” means that X assumes the value 0,
while the term “turn ON” means that X assumes all values in Fq that are different from zero. Think of this
situation as a light switch on which you have the option to turn OFF the light and the option to turn it ON
to one of q − 1 different colors.

We consider first sequences of exponential sums of trapezoid functions. As in the Boolean case, they
satisfy linear recurrences with integer coefficients over any Galois field Fq. We start with the following
lemma, which is interesting in its own right.

Lemma 4.1. Let k, n and j be integers with k > 2, 1 ≤ j < k and n ≥ k. Then,

(4.2) SFq

(
T2,3,··· ,k(n) +

j∑
s=1

βs

k−s−1∏
l=0

Xn−l

)
= SFq

(
T2,3,··· ,k(n) +

j∑
s=1

k−s−1∏
l=0

Xn−l

)
for any choice of βs ∈ F×q .

Proof. The proof is by induction on n. Suppose first that n = k. Observe that

T2,3,··· ,k(k) +

j∑
s=1

βs

k−s−1∏
l=0

Xk−l = X1X2 · · ·Xk + βjXj+1Xj+2 · · ·Xk + βj−1XjXj+1 · · ·Xk

+ · · ·+ β2X3X4 · · ·Xk + β1X2X3 · · ·Xk.(4.3)

Consider the right hand side of (4.3). If 1 ≤ j ≤ k − 2, then make the changes of variables

Xt = Yt, for j + 2 ≤ t ≤ k
Xj+1 = β−1

j Yj+1

Xt = β−1
t−1βtYt, for 2 ≤ t ≤ j

X1 = β1Y1.

On the other hand, if j = k − 1, then make the change of variables

Xk = β−1
k−1Yk

Xt = β−1
t−1βtYt, for 2 ≤ t ≤ k − 1

X1 = β1Y1.

This transforms (4.3) into

(4.4) Y1Y2 · · ·Yk +

j∑
s=1

k−s−1∏
l=0

Yk−l.

Therefore,

(4.5) SFq

(
T2,3,··· ,k(k) +

j∑
s=1

βs

k−s−1∏
l=0

Xk−l

)
= SFq

(
T2,3,··· ,k(k) +

j∑
s=1

k−s−1∏
l=0

Xk−l

)
.

This concludes the base case.
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Suppose now that for some n ≥ k we have

(4.6) SFq

(
T2,3,··· ,k(n) +

j∑
s=1

βs

k−s−1∏
l=0

Xn−l

)
= SFq

(
T2,3,··· ,k(n) +

j∑
s=1

k−s−1∏
l=0

Xn−l

)
.

Consider

(4.7) SFq

(
T2,3,··· ,k(n+ 1) +

j∑
s=1

βs

k−s−1∏
l=0

Xn+1−l

)
.

Suppose first that 1 ≤ j ≤ k − 2. Letting Xn+1 run over every element of the field leads to

SFq

(
T2,3,··· ,k(n+ 1) +

j∑
s=1

βs

k−s−1∏
l=0

Xn+1−l

)
= SFq (T2,3,··· ,k(n))

+
∑
α∈F×

q

SFq

(
T2,3,··· ,k(n) +

j+1∑
s=1

γs(α)

k−s−1∏
l=0

Xn−l

)
,(4.8)

where γ1(α) = α and γs(α) = αβs−1. By induction

(4.9) SFq

(
T2,3,··· ,k(n) +

j+1∑
s=1

γs(α)

k−s−1∏
l=0

Xn−l

)
= SFq

(
T2,3,··· ,k(n) +

j+1∑
s=1

k−s−1∏
l=0

Xn−l

)
.

Therefore,

SFq

(
T2,3,··· ,k(n+ 1) +

j∑
s=1

βs

k−s−1∏
l=0

Xn+1−l

)
= SFq (T2,3,··· ,k(n))

+
∑
α∈F×

q

SFq

(
T2,3,··· ,k(n) +

j+1∑
s=1

k−s−1∏
l=0

Xn−l

)
.(4.10)

However, (4.10) does not depend on the choice of the βt’s. It follows that

SFq

(
T2,3,··· ,k(n+ 1) +

j∑
s=1

βs

k−s−1∏
l=0

Xn+1−l

)
= SFq

(
T2,3,··· ,k(n+ 1) +

j∑
s=1

k−s−1∏
l=0

Xn+1−l

)
is true for 1 ≤ j ≤ k − 2.

Consider now the case j = k − 1. Again, letting Xn+1 run over every element of the field leads to

SFq (T2,3,··· ,k(n+ 1) +

k−1∑
s=1

βs

k−s−1∏
l=0

Xn+1−l) = SFq (T2,3,··· ,k(n))

+
∑
α∈F×

q

e
2πi
p TrFq/Fp (αβk−1)SFq

(
T2,3,··· ,k(n) +

k−1∑
s=1

γs(α)

k−s−1∏
l=0

Xn−l

)
,(4.11)

where γ1(α) = α and γs(α) = αβs−1. However, by induction

(4.12) SFq

(
T2,3,··· ,k(n) +

k−1∑
s=1

γs(α)

k−s−1∏
l=0

Xn−l

)
= SFq

(
T2,3,··· ,k(n) +

j+1∑
s=1

k−s−1∏
l=0

Xn−l

)
.

Since

(4.13)
∑
α∈F×

q

e
2πi
p TrFq/Fp (αβk−1) = −1,
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then it follows that

SFq

(
T2,3,··· ,k(n+ 1) +

k−1∑
s=1

βs

k−s−1∏
l=0

Xn+1−l

)
= SFq (T2,3,··· ,k(n))

−
∑
α∈F×

q

SFq

(
T2,3,··· ,k(n) +

k−1∑
s=1

k−s−1∏
l=0

Xn−l

)
.(4.14)

Since (4.10) does not depend on the choice of the βt’s, then it follows that

SFq

(
T2,3,··· ,k(n+ 1) +

k−1∑
s=1

βs

k−s−1∏
l=0

Xn+1−l

)
= SFq

(
T2,3,··· ,k(n+ 1) +

k−1∑
s=1

k−s−1∏
l=0

Xn+1−l

)
is true. This completes the induction and the proof. �

Next is the linear recurrence for exponential sums of trapezoid functions over any Galois field.

Theorem 4.2. Let k ≥ 2 be an integer and q = pr with p prime. The sequence {SFq (T2,3,··· ,k(n))}∞n=k

satisfies a homogeneous linear recurrence with integer coefficients whose characteristic polynomial is given
by

(4.15) QT,k,Fq (X) = Xk − q
k−2∑
l=0

(q − 1)lXk−2−l.

In particular, when q = 2 we recover Theorem 3.1.

Proof. We present the proof for k > 2. The case k = 2 can be proved using similar techniques. Start by
turning Xn OFF and ON, that is, by letting Xn assume all its possible values. This produces the identity

SFq (T2,3,··· ,k(n)) = SFq (T2,3,··· ,k(n− 1)) +
∑
β∈F×

q

SFq

T2,3,··· ,k(n− 1) + β

k−1∏
j=1

Xn−j

(4.16)

However, Lemma 4.1 implies

(4.17) SFq

T2,3,··· ,k(n− 1) + β

k−1∏
j=1

Xn−j

 = SFq

T2,3,··· ,k(n− 1) +

k−1∏
j=1

Xn−j


for every β ∈ F×q . Therefore, (4.16) reduces to

SFq (T2,3,··· ,k(n)) = SFq (T2,3,··· ,k(n− 1)) + (q − 1)SFq

T2,3,··· ,k(n− 1) +
k−1∏
j=1

Xn−j

(4.18)

Consider now SFq

(
T2,3,··· ,k(n− 1) +

∏k−1
j=1 Xn−j

)
. Let Xn−1 assume all its possible values and use the same

argument as before to get

SFq

T2,3,··· ,k(n− 1) +

k−1∏
j=1

Xn−j

 = SFp (T2,3,··· ,k(n− 2))

+(q − 1)SFq

T2,3,··· ,k(n− 2) +

k−2∏
j=1

Xn−1−j +

k−1∏
j=1

Xn−1−j

(4.19)

Thus, (4.18) reduces to

SFq (T2,3,··· ,k(n)) = SFq (T2,3,··· ,k(n− 1)) + (q − 1)SFq (T2,3,··· ,k(n− 2))

+(q − 1)2SFq

T2,3,··· ,k(n− 2) +

k−2∏
j=1

Xn−1−j +

k−1∏
j=1

Xn−1−j

 .(4.20)
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Continue in this manner to get the following equation

SFq (T2,3,··· ,k(n)) =

k−1∑
l=1

(q − 1)l−1SFqT2,3,··· ,k(n− l))(4.21)

+(q − 1)k−1SFq

T2,3,··· ,k(n− k + 1) +

k−2∑
j=0

j∏
l=0

Xn−k+1−l

 .

On the other hand, let Xn+1 assume all its possible values and use Lemma 4.1 to get the equation

SFq

T2,3,··· ,k(n+ 1) +

k−2∑
j=0

j∏
l=0

Xn+1−l

 = SFq (T2,3,··· ,k(n))

+e
2πi
p TrFq/Fp (α1)SFq

T2,3,··· ,k(n) +

k−2∑
j=0

j∏
l=0

Xn−l

(4.22)

+e
2πi
p TrFq/Fp (α2)SFq

T2,3,··· ,k(n) +

k−2∑
j=0

j∏
l=0

Xn−l


+e

2πi
p TrFq/Fp (α3)SFq

T2,3,··· ,k(n) +

k−2∑
j=0

j∏
l=0

Xn−l


...

+e
2πi
p TrFq/Fp (αq−1)SFq

T2,3,··· ,k(n) +

k−2∑
j=0

j∏
l=0

Xn−l

 .

Now use the well-known formula

(4.23)
∑
β∈F×

q

e
2πi
p TrFq/Fp (β) = −1.

to reduce (4.22) to

SFq

T2,3,··· ,k(n+ 1) +

k−2∑
j=0

j∏
l=0

Xn+1−l

 = SFq (T2,3,··· ,k(n))(4.24)

−SFq

T2,3,··· ,k(n) +

k−2∑
j=0

j∏
l=0

Xn−l

 .

This last equation is equivalent to

SFq (T2,3,··· ,k(n)) = SFq

T2,3,··· ,k(n+ 1) +

k−2∑
j=0

j∏
l=0

Xn+1−l

(4.25)

+SFq

T2,3,··· ,k(n) +

k−2∑
j=0

j∏
l=0

Xn−l

 .

Let an = SFq

(
T2,3,··· ,k(n) +

∑k−2
j=0

∏j
l=0Xn−l

)
. Then,

(4.26) SFq (T2,3,··· ,k(n)) = an+1 + an

and equation (4.21) is now

(an+1 + an) =

k−1∑
l=1

(q − 1)l−1(an+1−l + an−l) + (q − 1)k−1an−k+1.(4.27)
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The last equation reduces to

(4.28) an+1 =

k−2∑
l=0

q(q − 1)lan−1−l

This concludes the proof. �

The polynomial QT,k,Fq (X) is quite interesting. In particular, it seems to be irreducible for k > 2
and every q = pr with p prime. The irreducibility of QT,k,Fq (X) when gcd(k, r) = 1 is a consequence of
Eisenstein-Dumas criterion.

Theorem 4.3 (Eisenstein-Dumas criterion). Let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 ∈ Z[x] be a
polynomial. Let p be a prime. Denote the p-adic valuation of an integer m by νp(m) (with νp(0) = +∞).
Suppose that

(1) νp(an) = 0,
(2) νp(an−i)/i > νp(a0)/n for 1 ≤ i ≤ n− 1, and
(3) gcd(νp(a0), n) = 1.

Then, f(x) is irreducible over Q.

Proposition 4.4. Let q = pr with p prime. Suppose that gcd(k, r) = 1. Then, the polynomial

(4.29) QT,k,Fq (X) = Xk − q
k−2∑
l=0

(q − 1)lXk−2−l

is irreducible over Q.

Proof. This is a direct consequence of Eisenstein-Dumas criterion. �

Exponential sums over Fq of rotation functions also satisfy homogeneous linear recurrences. However,
in general, these linear recurrences have higher order than the homogeneous linear recurrences satisfied by
exponential sums of trapezoid functions. In other words, the identity observed over F2 between the linear
recurrences of exponential sums of trapezoid Boolean functions and rotation symmetric Boolean functions
is lost over Fq. For example, if we consider the monomial rotation

(4.30) R2(n) = X1X2 +X2X3 + · · ·+Xn−1Xn +XnX1,

then we have the following result.

Theorem 4.5. Suppose that p > 2 is prime. Then, {SFp(R2(n)} satisfy the homogeneous linear recurrence
with characteristic polynomial

(4.31) QR,2,Fp(X) = X4 − p2.

Proof. This is the first result for which its proof relies on linear algebra. Turn Xn and Xn−1 OFF and ON,
that is, let them assume all values in Fp, and use the identity

(4.32) SFp(T2(n) + βXn) = SFp(T2(n) +Xn), for β ∈ F×p
to get the equation

SFp(R2(n)) = SFp(T2(n− 2)) + (p− 1)SFp(T2(n− 2) +Xn−2)(4.33)

+
∑
α∈F×

p

∑
β∈Fp

e
2πi
p αβSFp(T2(n− 2) + αX1 + βXn−2),

Let

a0(n) = SFp(T2(n))(4.34)

a1(n) = SFp(T2(n) +Xn)

bα,β(n) = SFp(T2(n) + αX1 + βXn) for α ∈ F×p , β ∈ Fp.
Then,

SFp(R2(n)) = a0(n− 2) + (p− 1)a1(n− 2) +
∑
α∈F×

p

∑
β∈Fp

e
2πi
p αβbα,β(n− 2).(4.35)
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Observe that

a0(n) = a0(n− 1) + (p− 1)a1(n− 1)(4.36)

a1(n) = a0(n− 1)− a1(n− 1)

bα,β(n) =
∑
γ∈Fp

e
2πi
p (βγ)bα,γ(n− 1),

which can be written in matrix form as

(4.37)



a0(n)
a1(n)
b1,0(n)
b1,1(n)

...
bp−1,p−1(n)


= A(p)



a0(n− 1)
a1(n− 1)
b1,0(n− 1)
b1,1(n− 1)

...
bp−1,p−1(n− 1)


where

A(p) =


A0(p) O O · · · O
O A1(p) O · · · O
O O A2(p) · · · O
...

...
...

. . .
...

O O O · · · Ap−1(p)

 ,(4.38)

and

(4.39) A0(p) =

(
1 p− 1
1 −1

)
and Aj(p) =



1 1 1 · · · 1

1 e
2πi
p e

4πi
p · · · e

2(p−1)πi
p

1 e
4πi
p e

8πi
p · · · e

2×2(p−1)πi
p

...
...

...
. . .

...

1 e
2(p−1)πi

p e
4(p−1)πi

p · · · e
2×(p−1)2πi

p


,

for 1 ≤ j ≤ p − 1. It is clear that the first block A0(p) satisfies X2 − p. All other blocks Aj(p)’s, for
1 ≤ j ≤ p− 1, are

√
p ·Wp, where Wp is the p× p square Discrete Fourier Transform matrix. Observe that

(4.40) Aj(p)
2 =


p 0 · · · 0 0
0 0 · · · 0 p
0 0 · · · p 0
...

... . .
. ...

...
0 p · · · 0 0

 .

Therefore,

(4.41) Aj(p)
4 =


p2 0 0 · · · 0
0 p2 0 · · · 0
0 0 p2 · · · 0
...

...
...

. . .
...

0 0 0 · · · p2

 .

In other words, the big blocks Aj(p)’s satisfiy X4 − p2. Since X2 − p |X4 − p2, then we conclude that the
matrix A(p) satisfies the polynomial

(4.42) QR,2,Fp(X) = X4 − p2.

This means that the sequences {a0(n)}, {a1(n)} and {bα,β(n)}, for α ∈ F×p , β ∈ Fp, all satisfy the linear
recurrence with characteristic polynomial given by QR,2,Fp(X). Since {SFp(R2(n))} is a combination of these
sequences, then it also satisfies such recurrence. This concludes the proof. �

We are now ready to prove one of the main results of this article. That is, exponential sums of rotation
polynomials satisfiy linear recurrences with integer coefficients.
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Theorem 4.6. Let k ≥ 2 be an integer and q = pr with p prime and r ≥ 1. The sequence {SFq (R2,3,··· ,k(n))}n≥k
satisfies a linear recurrence with integer coefficients.

Proof. Let ζp = e2πi/p. Consider the expression SFq (R2,3,··· ,k(n + k)). Let Xn+k, Xn+k−1, · · · , Xn assume
all values in Fq and observe that SFq (R2,3,··· ,k(n+ k)) can be written as a linear combination of expressions
of the form

(4.43) aα;β(n) = SFq

T2,3,··· ,k(n) +

k−1∑
j=1

(
αj

j∏
l=1

Xn+1−l + βj

j∏
l=1

Xl

) ,

where α = (α1, · · · , αk) ∈ Fk−1
q and β = (β1, · · · , βk) ∈ Fk−1

q . However, note that for each α,β ∈ Fk−1
q , we

have

(4.44) aα;β(n) =
∑

γ,λ∈Fk−1
q

cγ,λ · aγ,λ(n− 1),

where cγ,λ ∈ Z[ζp] is a cyclotomic integer. Let A2,3,··· ,k(q) be the corresponding matrix for the linear
equations in (4.44) and F (X) be any annihilating polynomial for A2,3,··· ,k(q). We can assume that F (X)
has integer coefficients. This is because the minimal polynomial of A2,3,··· ,k(q) is monic, has algebraic
integers coefficients and integrality is transitive. Then each {aα;β(n)}n satisfies the linear recurrence with
characteristic polynomial given by F (X). Since {SFq (R2,3,··· ,k(n + k))} is a linear combination of these
sequences, then {SFq (R2,3,··· ,k(n+ k))} also satisfies such recurrence. This concludes the proof. �

It has been mentioned before that the identity between linear recurrences of exponential sums of trapezoid
Boolean functions and rotation symmetric Boolean functions is lost over Fq. However, the proof of Theorem
4.6 suggests that a relation between them can be recovered.

Corollary 4.7. Let q = pr with p prime and r ≥ 1. Let µT,k,Fq (X) and µR,k,Fq (X) be the characteristic
polynomials associated to the minimal homogeneous linear recurrences with integer coefficients satisfied by
{SFq (T2,3,··· ,k(n))} and {SFq (R2,3,··· ,k(n))} (resp.). Then,

(4.45) µT,k,Fq (X) |µR,k,Fq (X).

In particular, if gcd(k, r) = 1, then QT,k,Fq (X) |µR,k,Fq (X)

Proof. In the proof of Theorem 4.6. Observe that {a0;0(n)} = {Sq(T2,3,··· ,k(n))}, this implies (4.45). Now,
if gcd(k, r) = 1, then QT,k,Fq (X) is irreducible and therefore µT,k,Fq (X) = QT,k,Fq (X). This concludes the
proof. �

Definition 4.8. Let {b(n)} be a sequence on an integral domain D. A set of sequences

{{a1(n)}, {a2(n)}, · · · , {as(n)}},

where s is some natural number, is called a recursive generating set for {b(n)} if

(1) there is an integer l such that for every n, b(n) can be written as a linear combination of the form

b(n) =

s∑
j=1

cj · aj(n− l),

where cj ’s are constants that belong to D, and
(2) for each 1 ≤ j0 ≤ s and every n, aj0(n) can be written as a linear combination of the form

aj0(n) =

s∑
j=1

dj · aj(n− 1),

where dj ’s are also constants that belong to D.

The sequences {aj(n)}’s are called recursive generating sequences for {b(n)}.

Remark 4.9. It is a well-known result in the theory of recursive sequences that a sequence that has a
recursive generating set satisfies a linear recurrence with constant coefficients. In fact, this technique has
been used in Theorems 4.5 and 4.6.
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Theorem 4.6 can be generalized to monomial rotation functions and linear combinations of them. To be
specific, exponential sums over any Galois field of linear combinations of monomial rotation polynomials
satisfy linear recurrences with integer coefficients. Of course, in general, we might need to turn OFF and
ON more than k variables, even if the rotation is of degree k. Also, even though the sequences (4.43)
always exist, their number might be too big to be handled by hand. For example, consider the sequence
of exponential sums {SF3(R2,3(n))}. After some identifications, the authors needed 24 different recursive
generating sequences (not claiming that this is optimal) of the form (4.43) and their corresponding 24× 24
matrix in order to find that {SF3

(R2,3(n))} satisfy the linear recurrence whose characteristic polynomial is
given by

X6 − 3X4 − 9X3 + 9X + 18 =
(
X3 − 3

) (
X3 − 3X − 6

)
(4.46)

=
(
X3 − 3

)
QT,3,F3

(X).

Also, in general, to find the minimal polynomial of a matrix is not an easy task, therefore explicit formulas
like the ones in Theorem 4.2 and Theorem 4.5 are much harder to get.

In the next section, this technique is used to prove that exponential sums over Galois fields of elementary
symmetric polynomials (and linear combinations of them) satisfy homogeneous linear recurrences with integer
coefficients.

5. Linear recurrences over Fq: Symmetric polynomials case

It is a well-established result that exponential sums of symmetric Boolean functions are linear recurrent.
This was first established by Cai, Green and Thierauf [4]. In [5], Castro and Medina use this result to show
that a conjecture of Cusick, Li, Stǎnicǎ [11] is true asymptotically. In [6], some of the results of [5] where
extended to some perturbations of symmetric Boolean functions. This recursivity was also used in [7, 8] to
study the periodicity mod p (p prime) of exponential sums of symmetric Boolean functions.

In this section we show that exponential sums of some symmetric polynomials are linear recurrent over
any Galois field. Remarkably, the proof uses the same argument as in the proof of Theorem 4.6. We decided
to include the proof for completeness of the writing. However, the reader is welcome to skip the proof.

Let σn,k be the elementary symmetric polynomial in n variables of degree k. For example,

(5.1) σ4,3 = X1X2X3 +X1X4X3 +X2X4X3 +X1X2X4.

We have the following result.

Theorem 5.1. Let k ≥ 2 be an integer and q = pr with p prime and r ≥ 1. The sequence {SFq (σn,k)}
satisfies a linear recurrence with constant coefficients.

Proof. Consider the expression SFq (σn+k,k). Define

(5.2) aβ(n) = SFq

σn,k +

k−1∑
j=1

βjσn,k−j

 ,

The set {aβ(n)}β∈Fk−1
q

is a recursive generating set for SFq (σn+k,k). Therefore, the sequence {SFq (σn+k,k)}n≥0

satisfies a linear recurrence with constant coefficients. As in the proof of Theorem 4.6, it can be argued that
a linear recurrence with integer coefficients is guaranteed to exist. This concludes the proof. �

This result can be generalized to any polynomial of the form

(5.3)

k−1∑
j=0

βjσn,k−j ,

with βj ∈ Fq. We present the result without proof, as it follows almost verbatim as the one from Theorem
5.1.

Theorem 5.2. Let k ≥ 2 be an integer and q = pr with p prime and r ≥ 1. The sequence

(5.4) SFq

k−1∑
j=0

βjσn,k−j


satisfies a linear recurrence with constant coefficients, regardless of the choice of the βj’s.
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Example 5.3. Consider the sequence {SF3(σn,3)}. Recall that in this case the generating sequences are
given by

(5.5) a(s,t)(n) = {SF3(σn,3 + sσn,2 + tσn,1)},
where s, t ∈ F3. Establish the order

(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2).

Then,

(5.6)


a(0,0)(n)
a(1,0)(n)

...
a(2,2)(n)

 = A


a(0,0)(n− 1)
a(1,0)(n− 1)

...
a(2,2)(n− 1)

 ,

where the matrix A is given by

(5.7) A =



1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0
0 0 1 0 1 0 1 0 0

0 0 0 1 e
2iπ
3 e−

2iπ
3 0 0 0

e−
2iπ
3 0 0 0 1 0 0 0 e

2iπ
3

e
2iπ
3 0 0 0 0 1 0 e−

2iπ
3 0

0 0 0 0 0 0 1 e−
2iπ
3 e

2iπ
3

0 0 e−
2iπ
3 e

2iπ
3 0 0 0 1 0

0 e
2iπ
3 0 e−

2iπ
3 0 0 0 0 1


.

The minimal polynomial of A is given by

µA(X) = X9 − 9X8 + 36X7 − 81X6 + 108X5 − 81X4 + 81X2 − 81X + 27(5.8)

=
(
X3 − 3X2 + 3

) (
X6 − 6X5 + 18X4 − 30X3 + 36X2 − 27X + 9

)
.

Therefore, {SF3(σn,3)} satisfies the linear recurrence with characteristic polynomial given by µA(X).

5.1. Quadratic case. The case of the elementary symmetric polynomial of degree 2 is fascinating. Observe
that the collection of the sequences

(5.9) as(n) = SFp(σn,2 + sσn,1),

where s ∈ Fp, is a recursive generating set for {SFp(σn,2)}. Also,

(5.10)


a0(n)
a1(n)

...
ap−1(n)

 = M(p)


a0(n− 1)
a1(n− 1)

...
ap−1(n− 1)

 ,

where the matrix M(p) is given by

(5.11) M(p) =



1 1 1 1 1 · · · 1

e
2(p−1)πi

p 1 e
2πi
p e

4πi
p e

6πi
p · · · e

2(p−2)πi
p

e
2×2(p−2)πi

p e
2×2(p−1)πi

p 1 e
4πi
p e

8πi
p · · · e

2×2(p−3)πi
p

e
2×3(p−3)πi

p e
2×3(p−2)πi

p e
2×3(p−1)πi

p 1 e
6πi
p · · · e

2×2(p−3)πi
p

e
2×4(p−4)πi

p e
2×4(p−3)πi

p e
2×4(p−2)πi

p e
2×4(p−2)πi

p 1 · · · e
2×2(p−3)πi

p

...
...

...
...

...
. . .

...

e
2(p−1)πi

p e
2×2(p−1)πi

p e
2×3(p−1)πi

p e
2×4(p−1)πi

p e
2×5(p−1)πi

p · · · 1


.

The matrix M(p) can be obtained from the p× p Fourier Discrete Transform Matrix by replacing its j-row
rj by RTCj−1(rj), where RTC is the rotate through carry function

(5.12) RTC(a1, a2, a3, · · · , an) = (an, a1, a2, · · · , an−1)
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and RTCm represents m iterations of RTC.
It is not hard to prove that M(p) is a Complex Hadamard Matrix. In particular,

(5.13) M(p)M(p)
T

= M(p)
T
M(p) =


p 0 0 · · · 0
0 p 0 · · · 0
0 0 p · · · 0
...

...
...

. . .
...

0 0 0 · · · p

 .

This implies that M(p) is diagonalizable and that all its eigenvalues satisfy |λ| =
√
p. Moreover, its eigen-

values are related to the number-theoretical quadratic Gauss sum mod p. The quadratic Gauss sum mod p
is defined by

(5.14) g(a; p) =

p−1∑
k=0

e2πiak2/p

It is well-established that

(5.15) g(a; p) =

(
a

p

)
g(1; p),

where (a/p) denotes the Legendre’s symbol, and that

(5.16) g(1; p) =

{√
p p ≡ 1 mod 4

i
√
p p ≡ 3 mod 4.

Theorem 5.4. Let C(p) be the set of eigenvalues of M(p). Let ζp = e2πi/p. Then, λ ∈ C(p) if and only if

(5.17) λ =

(
−2

p

)
g(1; p)ζ−sa

2

.

In particular, |C(p)| = (p+ 1)/2.

Proof. Let p be an odd prime number and ζ = exp(2πi/p). The matrix M(p) has (j, k)-entry ζj(k−j) where
j and k run from 0 to p − 1 inclusive. We compute the eigenvalues of M(p) simply by writing down its
eigenvectors.

Set s = 1
2 (p − 1). Then 1 ≡ −2s (mod p) For 0 ≤ a ≤ p − 1, let va be the column vector with k-entry

ζs(k−a)2 where 0 ≤ k ≤ p− 1. Then the va are the cyclic shifts of v0. The entry in row j of M(p)va is

p−1∑
k=0

ζj(k−j)+s(k−a)2 =

p−1∑
k=0

ζ−2sjk+2sj2+sk2−2sak+sa2

=

p−1∑
k=0

ζs(k−a−j)
2+sj2−2saj

= g(s; p)ζs(j−a)2−sa2 .

This is g(s, p)ζ−sa
2

times the entry in row j of va. Therefore each va is an eigenvector with eigenvalue

g(s; p)ζ−sa
2

=

(
s

p

)
g(1; p)ζ−sa

2

=

(
−2

p

)
g(1; p)ζ−sa

2

.

As these eigenvalues are not all distinct, there remains the possibility that some of these eigenvectors va
are not linearly independent. That can only happen with eigenvectors in the same eigenspace, so for va
and vp−a where 0 < a < p. But it is clear that none of the va are multiples of any of the others; simply
consider the quotients of corresponding entries. So we have a dimension-two eigenspace for each eigenvalue(
−2
p

)
g(1, p)ζ−sa

2

for 1 ≤ a ≤ 1
2 (p− 1). This completes the proof. �

Note that if λ is defined as in (5.17), then equation (5.16) implies

(5.18) λp = (−i)
p−1
2
√
pp
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for every odd prime p. Therefore, Theorem 5.4 leads to

(5.19) M(p)p =


(−i)

p−1
2
√
pp 0 0 · · · 0

0 (−i)
p−1
2
√
pp 0 · · · 0

0 0 (−i)
p−1
2
√
pp · · · 0

...
...

...
. . .

...

0 0 0 · · · (−i)
p−1
2
√
pp

 ,

and so

(5.20) M(p)2p =



(
−1
p

)
pp 0 0 · · · 0

0
(
−1
p

)
pp 0 · · · 0

0 0
(
−1
p

)
pp · · · 0

...
...

...
. . .

...

0 0 0 · · ·
(
−1
p

)
pp


.

Thus,

(5.21) X2p −
(
−1

p

)
pp

is an annihilating polynomial for the matrix M(p), which in turns implies that {SFp(σn,2)} satisfies the linear
recurrence with characteristic polynomial (5.21).

6. Some observations and concluding remarks

We had shown that exponential sums over Galois fields of trapezoid polynomials and rotation polynomials
satisfy linear recurrences with integer coefficients. An implication of this is that they can be calculated
efficiently if we know a priori their initial values.

We predict the initial conditions for two families of these type of polynomials. Consider first the trapezoid
polynomial T2,3,··· ,k(n). Recall that {SFq (T2,3,··· ,k(n))} satisfies the linear recurrence with integer coefficients
whose characteristic polynomial is given by QT,k,Fq (X). This polynomial is of degree k. Thus, if we know
k initial values, then we calculate the whole sequence. Of course, {SFq (T2,3,··· ,k(n))} makes sense only for
values of n ≥ k, however, since it satisfies a linear recurrence with integer coefficients, it can be extended to
values of n < k. We conjecture the following.

Conjecture 6.1. Let {tk,q(n)} be defined by

tk,q(j) = qj , for 0 ≤ j ≤ k − 1(6.1)

tk,q(n) = = q

k−2∑
l=0

(q − 1)ltk,q(n− (l + 2)), for n ≥ k.

Then, SFq (T2,3,··· ,k(n)) = tk,q(n) for all values of n ≥ k.

We were able to prove that this conjecture is true for k = 2, 3, 4, but the general statement remains open.
We were also able to predict the initial conditions for {S(R2,3,··· ,k(n))} (Boolean case). Recall that this
sequence satisfies the linear recurrence whose characteristic polynomial is given by

(6.2) pk(X) = Xk − 2(Xk−2 +Xk−3 + · · ·+X + 1).

Therefore, as in the case of trapezoid polynomial T2,3,··· ,k(n), we need to know k initial values in order to
calculate the whole sequence.

Conjecture 6.2. Let

(6.3) δo(j) =

{
0 if j is even

1 if j is odd.
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Define {rk(n)} by

rk(0) = k(6.4)

rk(j) = 2j − δo(j) · 2, for 1 ≤ j ≤ k − 1

rk(n) = 2

k−2∑
l=0

rk(n− (l + 2)), for n ≥ k.

Then, S(R2,3,··· ,k(n)) = rk(n) for all values of n ≥ k.

The problem of finding suitable initial conditions for this type of sequences is a nice problem, but also an
important one. For example, if Conjecture 6.2 is true, then

{S(R2,3,··· ,15(n))}n≥15 = 32766, 65504, 131036, 262036, 524096, 104813, 2096268, 4192412 · · ·
{S(R2,3,··· ,30(n))}n≥30 = 1073086444, 2146129256, 4292171136, 8584167576, 17167985776,

34335272736, 68669148016, 137335500952, · · ·
{S(R2,3,··· ,100(n))}n≥100 = 1267650600228229401496703205376, 2535301200456458802993406410548,

5070602400912917605986812821300, 10141204801825835211973625642388,

20282409603651670423947251284976, 40564819207303340847894502569720,

· · ·
On the other hand, we know that Conjecture 6.1 is true for k = 3, which means, for example, that

{SF9(T2,3(n))}n≥3 = 153, 1377, 7209, 23409, 164025, 729729, 3161673, 18377361, · · ·
{SF73

(T2,3(n))}n≥3 = 234955, 80589565, 13881523159, 55203852025, 14215001955427,

1647320876934229, 11351488736356111, 2232536080171760209, · · ·
{SF712

(T2,3(n))}n≥3 = 50818321, 256175156161, 645881606118001, 2582501749259041,

9764439145967152081, 16422699840579863752321,

114835229977615135072561, 330868420079857977922668001, · · · .
Also, if Conjecture 6.1 is true in general, then we have, for example,

{SF5
(T2,3,4,5(n))}n≥5 = 1845, 9225, 39725, 173025, 730725, 2988025, 13244125, 56108625, · · ·

{SF112
(T2,3,··· ,7(n))}n≥7 = 18445769583241, 2231938119572161, 226346720724231481,

22141818198352009201, 2044333948085969113321,

170550498912524502711841, 11342127359186464124132761, · · ·
{SF7919

(T2,3,··· ,8(n))}n≥8 = 13665512318276822315545157633, 108217192048434155916802103295727,

734609211013142008709051078210604961,

4848502223556916452901817857822360556623,

30722822355930196223839440343843855453844801,

182535766024343164334384388453936618605681619887, · · · .
All these values where calculated almost instantaneously. Another nice problem is to automatize the

process presented in this work. This is part of future work.
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