PERIODICITY IN THE p-ADIC VALUATION OF A POLYNOMIAL

LUIS A. MEDINA, VICTOR H. MOLL, AND ERIC ROWLAND

Abstract

For a prime p and an integer x, the p-adic valuation of x is denoted by $\nu_{p}(x)$. For a polynomial Q with integer coefficients, the sequence of valuations $\nu_{p}(Q(n))$ is shown to be either periodic or unbounded. The first case corresponds to the situation where Q has no roots in the ring of p-adic integers. In the periodic situation, the period length is determined.

1. Introduction

For p prime and $n \in \mathbb{N}$, the exponent of the highest power of p that divides n is called the p-adic valuation of n. This is denoted by $\nu_{p}(n)$. Given a function $f: \mathbb{N} \rightarrow \mathbb{N}$, the study of sequences $\nu_{p}(f(n))$ goes back to at least Legendre [16], who established the classical formula

$$
\begin{equation*}
\nu_{p}(n!)=\sum_{k=1}^{\infty}\left\lfloor\frac{n}{p^{k}}\right\rfloor=\frac{n-s_{p}(n)}{p-1}, \tag{1.1}
\end{equation*}
$$

where $s_{p}(n)$ is the sum of the digits of n in base p.
The work presented here forms part of a general project to analyze the sequence

$$
V_{x}=\left\{\nu_{p}\left(x_{n}\right): n \in \mathbb{N}\right\}
$$

for given sequence $x=\left\{x_{n}\right\}$. Valuations have been studied for the Stirling numbers $S(n, k)$ [3, 6], sequences satisfying first-order recurrences [4], the Fibonacci numbers [17], the ASM (alternating sign matrices) numbers [7, 20], and coefficients of a polynomial connected to a quartic integral [2, 8, 21]. Other results of this type appear in [1, 11, 12, 13, 19].

Consider the sequence of valuations

$$
\begin{equation*}
V_{p}(Q)=\left\{\nu_{p}(Q(n)): n \in \mathbb{N}\right\}, \tag{1.2}
\end{equation*}
$$

for a prime p and a polynomial $Q \in \mathbb{Z}[x]$. The polynomial Q is assumed to be irreducible over \mathbb{Z}; otherwise the identity

$$
\begin{equation*}
V_{p}\left(Q_{1} Q_{2}\right)=V_{p}\left(Q_{1}\right)+V_{p}\left(Q_{2}\right) \tag{1.3}
\end{equation*}
$$

[^0]can be used to express $V_{p}(Q)$ in terms of its irreducible factors. The first result established in this paper is that $V_{p}(Q)$ is either periodic or unbounded (Theorem 2.1). In the case of a periodic sequence, the period length is explicitly determined (Theorem 5.1). The special case of quadratic polynomials is discussed in detail in Sections 3 and 4 .

The analysis includes the p-adic numbers \mathbb{Q}_{p} and the ring of integers \mathbb{Z}_{p}. Recall that each $x \in \mathbb{Q}_{p}$ can be expressed in the form

$$
\begin{equation*}
x=\sum_{k=k_{0}}^{\infty} c_{k} p^{k} \tag{1.4}
\end{equation*}
$$

with $0 \leq c_{k} \leq p-1$ and $c_{k_{0}} \neq 0$.
The p-adic integers \mathbb{Z}_{p} correspond to the case $k_{0} \geq 0$, and invertible elements in this ring have $k_{0}=0$. The set of invertible elements is denoted by \mathbb{Z}_{p}^{\times}. The p-adic absolute value of $x \in \mathbb{Q}_{p}$ is defined by $|x|_{p}=p^{-k_{0}}$. In particular, $x \in \mathbb{Z}_{p}^{\times}$if and only if $x \in \mathbb{Z}_{p}$ and $|x|_{p}=1$.

The determination of the sequence $V_{p}(Q)$ will require examining the irreducibility of Q in $\mathbb{Z}_{p}[x]$. Some classical criteria are stated below.

Theorem 1.1 (Eisenstein criterion [15, Proposition 5.3.11]). Let $f(x)=$ $a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}_{p}[x]$. Assume
(1) $\nu_{p}\left(a_{n}\right)=0$,
(2) $\nu_{p}\left(a_{j}\right)>0$ for $0 \leq j<n$, and
(3) $\nu_{p}\left(a_{0}\right)=1$.

Then f is irreducible in $\mathbb{Z}_{p}[x]$.
Theorem 1.2 (Hensel's lemma, polynomial version [15, Theorem 3.4.6]). Let $f \in \mathbb{Z}_{p}[x]$ and assume there are non-constant polynomials $g, h \in \mathbb{Z}_{p}[x]$, such that
(1) g is monic,
(2) g and h are coprime modulo p, and
(3) $f(x) \equiv g(x) h(x) \bmod p$.

Then f is reducible in $\mathbb{Z}_{p}[x]$.
Theorem 1.3 (Dumas Irreducibility Criterion [14]). Let $f \in \mathbb{Z}_{p}[x]$ be given by

$$
\begin{equation*}
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n} \tag{1.5}
\end{equation*}
$$

Suppose that
(1) $\nu_{p}\left(a_{0}\right)=0$,
(2) $\nu_{p}\left(a_{i}\right) / i>\nu_{p}\left(a_{n}\right) / n$ for $1 \leq i \leq n-1$, and
(3) $\operatorname{gcd}\left(\nu_{p}\left(a_{n}\right), n\right)=1$.

Then f is irreducible in $\mathbb{Z}_{p}[x]$.

2. Boundedness of the sequence $V_{p}(Q)$.

This section characterizes the boundedness of the sequence $V_{p}(Q)$ in terms of the existence of zeros of the polynomial Q in \mathbb{Z}_{p}. Bell [5] showed that $V_{p}(Q)$ is periodic in the case that Q has no zeros in \mathbb{Z}_{p} and gave a bound for the minimal period length.

Theorem 2.1. Let p be a prime and $Q \in \mathbb{Z}[x]$. Then $V_{p}(Q)$ is either periodic or unbounded. Moreover, $V_{p}(Q)$ is periodic if and only if Q has no zeros in \mathbb{Z}_{p}. In the periodic case, the minimal period length is a power of p.

Proof. Assume that Q has no zeros in \mathbb{Z}_{p}. If $V_{p}(Q)$ is not bounded there exists a sequence $n_{j} \rightarrow \infty$ such that $\nu_{p}\left(Q\left(n_{j}\right)\right) \rightarrow \infty$. The compactness of \mathbb{Z}_{p} (see [18]) gives a subsequence converging to $n_{\infty} \in \mathbb{Z}_{p}$. Then $Q\left(n_{\infty}\right)$ is divisible by arbitrary large powers of p, thus $Q\left(n_{\infty}\right)=0$. This contradiction shows $V_{p}(Q)$ is bounded. In order to show $V_{p}(Q)$ is periodic, define

$$
\begin{equation*}
d=\sup \left\{k: p^{k} \text { divides } Q(n) \text { for some } n \in \mathbb{Z}\right\} . \tag{2.1}
\end{equation*}
$$

Then $d \geq 0$ and

$$
\begin{equation*}
Q\left(n+p^{d+1}\right)=Q(n)+Q^{\prime}(n) p^{d+1}+O\left(p^{d+2}\right) . \tag{2.2}
\end{equation*}
$$

Since $\nu_{p}(Q(n)) \leq d$, it follows that

$$
\begin{equation*}
\nu_{p}\left(Q\left(n+p^{d+1}\right)\right)=\nu_{p}(Q(n)), \tag{2.3}
\end{equation*}
$$

proving that $\nu_{p}(Q(n))$ is periodic. The minimal period length is a divisor of p^{d+1}, thus a power of the prime p.

On the other hand, if Q has a zero $x=\alpha$ in \mathbb{Z}_{p},

$$
\begin{equation*}
Q(x)=(x-\alpha) Q_{1}(x), \text { with } Q_{1} \in \mathbb{Z}_{p}[x] . \tag{2.4}
\end{equation*}
$$

Then $\nu_{p}(Q(n)) \geq \nu_{p}(n-\alpha)$, and $V_{p}(Q)$ is unbounded.
The most basic result for establishing the existence of a zero of a polynomial in \mathbb{Z}_{p} is Hensel's lemma [15, Theorem 3.4.1]. In the following form, it states that a simple root of a polynomial modulo p has a unique lifting to a root in \mathbb{Z}_{p}.

Theorem 2.2 (Hensel's lemma). If $f \in \mathbb{Z}[x]$ and $a \in \mathbb{Z}_{p}$ satisfies

$$
\begin{equation*}
f(a) \equiv 0 \quad \bmod p \text { and } f^{\prime}(a) \not \equiv 0 \quad \bmod p \tag{2.5}
\end{equation*}
$$

then there is a unique $\alpha \in \mathbb{Z}_{p}$ such that $f(\alpha)=0$ and $\alpha \equiv a \bmod p$.
The following extension appears in [10, Lemma 3.1].
Proposition 2.3. Assume $f \in \mathbb{Z}[x]$ and $a \in \mathbb{Z}_{p}$ satisfies

$$
\begin{equation*}
\nu_{p}(f(a))>2 \nu_{p}\left(f^{\prime}(a)\right) . \tag{2.6}
\end{equation*}
$$

Then there is $\alpha \in \mathbb{Z}_{p}$ with $f(\alpha)=0$ and $\alpha \equiv a \bmod p$.

3. Quadratic polynomials and the prime $p=2$

Let $a \in \mathbb{Z}$ and $Q_{a}(x)=x^{2}-a$. This section considers the periodicity of the sequence $\left\{\nu_{2}\left(n^{2}-a\right)\right\}$. In view of Theorem 2.1, this is equivalent to the existence of a zero of Q_{a} in \mathbb{Z}_{2}. An elementary proof of Proposition 3.1 appears in [9]. Define c and $\mu(a)$ by

$$
\begin{equation*}
a=4^{\mu(a)} c \tag{3.1}
\end{equation*}
$$

with $c \not \equiv 0 \bmod 4$.
Proposition 3.1. The polynomial Q_{a} has no zeros in \mathbb{Z}_{2} if and only if $c \not \equiv 1$ $\bmod 8$.

Proof. Assume first that Q_{a} has no zeros in \mathbb{Z}_{2} and $c \equiv 1 \bmod 8$. If a is odd, then $a=c=1+8 j$ with $j \in \mathbb{Z}$. Then $Q_{a}(1)=1-a=-8 j$ and

$$
\begin{equation*}
\left|Q_{a}(1)\right|_{2} \leq \frac{1}{8} \text { and }\left|Q_{a}^{\prime}(1)\right|_{2}=\frac{1}{2} \tag{3.2}
\end{equation*}
$$

Therefore $\left|Q_{a}(1)\right|_{2}<\left(\left|Q_{a}^{\prime}(1)\right|_{2}\right)^{2}$ and Proposition 2.3 produces $\alpha \in \mathbb{Z}_{2}$ with $Q_{a}(\alpha)=0$. This is a contradiction.

In the case a even, write $a=4^{i}(1+8 j)$ with $i>0$ and $i \in \mathbb{Z}$. The previous case shows the existence of $\alpha \in \mathbb{Z}_{2}$ with $\alpha^{2}=(1+8 j)$. Then $\beta=2^{i} \alpha$ satisfies $Q_{2}(\beta)=0$, yielding a contradiction.

Assume now that $c \not \equiv 1 \bmod 8$. If a is odd, then $a=c$ and $a \equiv 3,5,7$ $\bmod 8$. A simple calculation shows that

$$
\nu_{2}\left(n^{2}-8 i-3\right)=\nu_{2}\left(n^{2}-8 i-7\right)= \begin{cases}1 & \text { if } n \text { is odd } \tag{3.3}\\ 0 & \text { if } n \text { is even }\end{cases}
$$

and

$$
\nu_{2}\left(n^{2}-8 i-5\right)= \begin{cases}2 & \text { if } n \text { is odd } \tag{3.4}\\ 0 & \text { if } n \text { is even }\end{cases}
$$

For these values of a, the sequence $V_{2}(Q)$ is bounded. Theorem 2.1 now shows that Q_{a} has no zeros in \mathbb{Z}_{2}.

If a is even, then it can be written as $a=4^{j}(8 i+r)$ with $j \geq 0$ and $r=$ $2,3,5,6,7$. The excluded case $r=4$ can be reduced to one of the residues listed above by consideration of the parity of the index i. Now suppose $Q_{a}(x)$ has a zero $\beta \in \mathbb{Z}_{2}$; that is, $\beta^{2}=a=4^{j}(8 i+r)$. Then $\alpha=\beta / 2^{j} \in \mathbb{Z}_{2}$ satisfies $\alpha^{2}=8 i+r$. Each of these cases lead to a contradiction. Indeed, if $r=3,5,7$ the valuations $\nu_{2}\left(n^{2}-8 i-r\right)$ are bounded contradicting Theorem 2.1. In the remaining two cases, the polynomial $x^{2}-8 i-r$ is irreducible over \mathbb{Z}_{2} by a direct application of the Eisenstein criterion. Therefore $Q_{a}(x)$ has no zeros. This concludes the proof.

The previous result is now restated in terms of periodicity. The explicit period length is given in Section 5 .

Theorem 3.2. Let $Q(x)=x^{2}-a$. Define c by the relation $a=4^{\mu(a)} c$, with $c \not \equiv 0 \bmod 4$. Then the sequence $V_{2}(Q)$ is periodic if and only if $c \not \equiv 1$ $\bmod 8$.

Combining Theorem 2.1, Proposition 3.1, and the classical result of Lagrange on representations of integers as sums of squares shows that the sequence of valuations $\left\{\nu_{2}\left(n^{2}+b\right): n \in \mathbb{N}\right\}$ is bounded if and only if b cannot be written as a sum of three squares.

4. Quadratic polynomials and an odd prime

This section extends the results of Section 3 to the case of odd primes.
Theorem 4.1. Let $p \neq 2$ be a prime, and let $a \in \mathbb{Z}$ with $k=\nu_{p}(a)$. The sequence $\nu_{p}\left(n^{2}-a\right)$ is periodic if and only if k is odd or a/p p^{k} is a quadratic non-residue modulo p. If it is periodic, its period length is $p^{\lceil k / 2\rceil}$.

Proof. Let $p \neq 2$. Hensel's lemma shows that an integer a not divisible by p has a square root in \mathbb{Z}_{p} if and only if a is a quadratic residue modulo p. This implies that $a \in \mathbb{Q}_{p}$ is a square if and only if it can be written as $a=p^{2 m} u^{2}$ with $m \in \mathbb{Z}$ and $u \in \mathbb{Z}_{p}^{\times}$a p-adic unit. Then $x^{2}-a$ has a zero in \mathbb{Z}_{p} is equivalent to k being even and a / p^{k} being a quadratic residue modulo p. This proves the first part of the theorem.

Now assume that $\nu_{p}\left(n^{2}-a\right)$ is periodic. It is shown that its period length is given by $p^{[k / 2\rceil}$. Suppose first that k is odd. Let $k_{*}=(k+1) / 2$ so that $\lceil k / 2\rceil=k_{*}$ and

$$
\begin{equation*}
\nu_{p}\left(\left(n+p^{k_{*}}\right)^{2}-a\right)=\nu_{p}\left(n^{2}-a+2 p^{k_{*}} n+p^{2 k_{*}}\right) . \tag{4.1}
\end{equation*}
$$

It is shown that

$$
\begin{equation*}
\nu_{p}\left(2 p^{k_{*}} n+p^{2 k_{*}}\right)>\nu_{p}\left(n^{2}-a\right), \tag{4.2}
\end{equation*}
$$

which implies $\nu_{p}\left(\left(n+p^{k_{*}}\right)^{2}-a\right)=\nu_{p}\left(n^{2}-a\right)$. Write $n=p^{\nu_{p}(n)} n_{0}$ and $a=p^{2 k_{*}+1} a_{0}$. Finally, let $\gamma=\min \left(\nu_{p}(n), k_{*}\right)$. Then

$$
\begin{align*}
\nu_{p}\left(p^{k_{*}}\left(2 n+p^{k_{*}}\right)\right) & \geq k_{*}+\min \left(\nu_{p}(2 n), k_{*}\right) \tag{4.3}\\
& =k_{*}+\gamma \\
& >k_{*}+\gamma+\nu_{p}\left(p^{2 \nu_{p}(n)-k_{*}-\gamma} n_{0}^{2}-p^{k_{*}-1-\gamma} a_{0}\right) \\
& =\nu_{p}\left(p^{2 \nu_{p}(n)} n_{0}^{2}-p^{2 k_{*}-1} a_{0}\right) \\
& =\nu_{p}\left(n^{2}-a\right)
\end{align*}
$$

since $0>\nu_{p}\left(p^{2 \nu_{p}(n)-k_{*}-\gamma} n_{0}^{2}-p^{k_{*}-1-\gamma} a_{0}\right)$. To justify this last inequality, observe that if $\nu_{p}(n) \geq k_{*}$ then $2 \nu_{p}(n)-k_{*}-\gamma=2\left(\nu_{p}(n)-k_{*}\right) \geq 0$ and $k_{*}-1-\gamma=-1<0$, and if $\nu<k_{*}$ then $2 \nu-k_{*}-\gamma=\nu-k_{*}<0$ and $k_{*}-1-\gamma \geq 0$.

Suppose now that k is even and a / p^{k} a quadratic non-residue. Then, there is $m \in \mathbb{N}_{0}$ and $a_{0} \in \mathbb{Z}$ such that $a=p^{2 m} a_{0}$ with a_{0} a quadratic non-residue modulo p. It is now shown that

$$
\begin{equation*}
\nu_{p}\left(\left(n+p^{m}\right)^{2}-a\right)=\nu_{p}\left(n^{2}-a\right) \tag{4.4}
\end{equation*}
$$

and that p^{m} is minimal with this property. If $m=0$, then (4.4) becomes $\nu_{p}\left((n+1)^{2}\right)=\nu_{p}\left(n^{2}-a\right)$. Both sides vanish since a is a quadratic non-residue modulo p. Now, for $m>0$, the statement (4.4) becomes

$$
\left(n+p^{m}\right)^{2}-a=n^{2}+2 n p^{m}+p^{2 m}-p^{2 m} a_{0}
$$

The proof of (4.4) is divided into cases. In the argument given below, it is assumed that $\operatorname{gcd}\left(n, n_{0}\right)=1$.

Case 1: Suppose that $n=p^{\beta} n_{0}$ with $\beta, n_{0} \in \mathbb{Z}$ and $\beta<m$. Observe that

$$
\nu_{p}\left(n^{2}-a\right)=\nu_{p}\left(p^{2 \beta}-p^{2 m} a_{0}\right)=2 \beta
$$

and

$$
\nu_{p}\left(2 p^{m} n+p^{2 m}\right)=\beta+m>2 \beta .
$$

Then $\nu_{p}\left(\left(n+p^{m}\right)^{2}-a\right)=\nu_{p}\left(n^{2}-a\right)$ as claimed.
Case 2: Suppose that $n=p^{m} n_{0}$ with $n_{0} \in \mathbb{Z}$. Note that

$$
\nu_{p}\left(n^{2}-a\right)=\nu_{p}\left(p^{2 m}\left(n_{0}^{2}-a_{0}\right)\right)=2 m,
$$

where the last equality follows from the fact that p does not divide $n_{0}^{2}-a_{0}$, since a_{0} is a quadratic non-residue modulo p. On the other hand,

$$
\begin{aligned}
\nu_{p}\left(\left(n+p^{m}\right)^{2}-a\right) & =\nu_{p}\left(p^{2 m} n_{0}^{2}+2 p^{2 m} n_{0}+p^{2 m}-p^{2 m} a_{0}\right) \\
& =\nu_{p}\left(p^{2 m}\left[n_{0}^{2}+2 n_{0}+1-a_{0}\right]\right) \\
& =\nu_{p}\left(p^{2 m}\left[\left(n_{0}+1\right)^{2}-a_{0}\right]\right) \\
& =2 m .
\end{aligned}
$$

This gives (4.4).
Case 3: Finally, suppose that $n=p^{\beta} n_{0}$ with $\beta, n_{0} \in \mathbb{Z}$ and $\beta>m$. It is easy to see that $\nu_{p}\left(n^{2}-a\right)=2 m$. Then

$$
\begin{aligned}
\left(n+p^{m}\right)-a & =n^{2}+2 p^{m} n+p^{2 m}-p^{2 m} a_{0} \\
& =p^{2 \beta} n_{0}^{2}+2 p^{m+\beta} n_{0}+p^{2 m}-p^{2 m} a_{0} \\
& =p^{2 m}\left(p^{2 \beta-2 m} n_{0}^{2}+2 p^{\beta-m}+\left(1-a_{0}\right)\right) .
\end{aligned}
$$

Now $1-a_{0} \not \equiv 0 \bmod p$ since a_{0} is a quadratic non-residue. Therefore p does not divide $1-a_{0}$ and (4.4) follows.

The conclusion is that $\nu_{p}\left(\left(n+p^{\lceil k / 2\rceil}\right)^{2}-a\right)=\nu_{p}\left(n^{2}-a\right)$ for every $n \in \mathbb{N}$. Therefore, the period length is a divisor of $p^{\lceil k / 2\rceil}$. The period length cannot be smaller, since for $n=0$

$$
\nu_{p}\left(\left(n+p^{i}\right)^{2}-a\right)=\nu_{p}\left(p^{2 i}-a\right)=2 i \neq k=\nu_{p}(-a)=\nu_{p}\left(n^{2}-a\right) .
$$

This completes the proof.
5. The sequence $V_{p}(Q)$ for a general polynomial

This section extends the results described in the previous two sections to the more general case of an arbitrary prime p and an arbitrary polynomial in $\mathbb{Z}_{p}[x]$.

Let $Q \in \mathbb{Z}_{p}[x]$. The p-adic Weierstrass preparation theorem [15, Theorem 6.2.6] implies the existence of a factorization $Q(x)=p^{m} u Q_{1}(x) H(x)$ where $Q_{1}(x)$ is a monic polynomial with coefficients in $\mathbb{Z}_{p}, u \in \mathbb{Z}_{p}^{\times}, m$ is an integer, and $H(x)$ is a series that converges in \mathbb{Z}_{p} with the property that $\nu_{p}(H(x))=0$ for every $x \in \mathbb{Z}_{p}$. Therefore,

$$
\begin{equation*}
V_{p}(Q)=\left\{\nu_{p}(Q(n)): n \in \mathbb{N}\right\} \tag{5.1}
\end{equation*}
$$

is a shift of $V_{p}\left(Q_{1}\right)$, showing that the general case can be reduced to the case when $Q(x)$ is a monic polynomial.
Theorem 5.1. Let $Q \in \mathbb{Z}[x]$ be a monic polynomial of degree $d \geq 2$, irreducible over \mathbb{Z}_{p}. Let $\alpha \geq 0$ be the largest non-negative integer such that $Q(x) \equiv 0 \bmod p^{\alpha}$ for some $x \in \mathbb{Z}$. Then $V_{p}(Q)$ is periodic with period length $p^{\lceil\alpha / d\rceil}$.

In fact a more general result, where \mathbb{Q} is replaced with an arbitrary number field, can be proved in a similar way. Let K be a number field with corresponding number ring R. Choose a prime ideal \mathfrak{p} of R and let $\nu: K^{\times} \rightarrow \mathbb{Z}$ be the corresponding valuation. Let $K_{\mathfrak{p}}$ be the completion of K with respect to ν and let $\mathcal{O}=\left\{a \in K_{\mathfrak{p}}: \nu(a) \geq 0\right\}$ be the closed unit ball. Let $\pi \in \mathcal{O}$ be a uniformizer, that is, $\nu(\pi)=1$, and relabel the valuation as ν_{π}.
Theorem 5.2. Let $Q \in \mathbb{Z}[x]$ be a monic polynomial of degree $d \geq 2$, irreducible over \mathcal{O}. Let $\alpha \geq 0$ be the largest non-negative integer such that $Q(x) \equiv 0 \bmod \pi^{\alpha}$ for some $x \in \mathbb{Z}$. Suppose the residue field $\mathcal{O} / \pi \mathcal{O}$ has characteristic p, and let $e=\nu_{\pi}(p)$ be the ramification index. Then $\left\{\nu_{\pi}(Q(n)): n \in \mathbb{N}\right\}$ is periodic with period length $p^{\lceil\alpha /(e d)\rceil}$.

The proofs of Theorems 5.1 and 5.2 are based on an expression for the valuation $\nu_{\pi}(Q(n))$.

Theorem 5.3. Let $A \subseteq \mathcal{O}$ be a subring and let $Q(x) \in A[x]$ be monic polynomial of degree $d \geq 2$, irreducible over \mathcal{O}. Let $\alpha \geq 0$ be the largest non-negative integer such that $Q(x) \equiv 0 \bmod \pi^{\alpha}$ for some $x \in A$. Choose $n_{0} \in A$ such that $Q\left(n_{0}\right) \equiv 0 \bmod \pi^{\alpha}$. Then, for $n \in A$,

$$
\nu_{\pi}(Q(n))=\left\{\begin{array}{lll}
d \nu_{\pi}\left(n-n_{0}\right) & \text { if } n \not \equiv n_{0} & \bmod \pi^{\lfloor\alpha / d\rfloor+1} \\
\alpha & \text { if } n \equiv n_{0} & \bmod \pi^{\lfloor\alpha / d\rfloor+1}
\end{array}\right.
$$

Proof. Define the absolute value $|\cdot|_{\pi}$ on K as $|a|_{\pi}=q^{-\nu_{\pi}(a)}$, where $|\mathcal{O} / \pi \mathcal{O}|=$ q. Write

$$
\begin{equation*}
Q(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{d}\right) \tag{5.2}
\end{equation*}
$$

over a splitting field for Q. Let $r=r_{1}$ and define $E=K_{\mathfrak{p}}(r)$. Then $E / K_{\mathfrak{p}}$ is a field extension of degree d and the π-adic absolute value extends to E by

$$
\begin{equation*}
|s|_{\pi}=\left|\operatorname{norm}_{E / K_{\mathfrak{p}}}(s)\right|_{\pi}^{1 / d} \tag{5.3}
\end{equation*}
$$

The norm of an element $s \in E$ is

$$
\begin{equation*}
\operatorname{norm}_{E / K_{\mathfrak{p}}}(s)=(-1)^{m l} a_{0}^{l} \tag{5.4}
\end{equation*}
$$

where $x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}$ is the minimal polynomial of s over $K_{\mathfrak{p}}$ and l is the degree of the extension of $E / K_{\mathfrak{p}}(s)$.

For every element $n \in A$, the minimal polynomial of $n-r$ is

$$
\begin{equation*}
\left(x-\left(n-r_{1}\right)\right)\left(x-\left(n-r_{2}\right)\right) \cdots\left(x-\left(n-r_{d}\right)\right) \tag{5.5}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
|n-r|_{\pi} & =\left|\left(n-r_{1}\right) \cdots\left(n-r_{d}\right)\right|_{\pi}^{1 / d} \\
& =|Q(n)|_{\pi}^{1 / d} \\
& =\left(q^{-\nu_{\pi}(Q(n))}\right)^{1 / d} .
\end{aligned}
$$

This gives

$$
\begin{equation*}
\nu_{\pi}(Q(n))=-d \log _{q}|n-r|_{\pi} \tag{5.6}
\end{equation*}
$$

(where $\log _{q}$ is the real logarithm to base q). Now take any $n_{0} \in A$ such that $Q\left(n_{0}\right) \equiv 0 \bmod q^{\alpha}$. Then

$$
\begin{aligned}
|n-r|_{\pi} & \leq \max \left(\left|n-n_{0}\right|_{\pi},\left|n_{0}-r\right|_{\pi}\right) \\
& =\max \left(\left|n-n_{0}\right|_{\pi}, q^{-\nu_{\pi}\left(Q\left(n_{0}\right)\right) / d}\right) \\
& =\max \left(\left|n-n_{0}\right|_{\pi}, q^{-\alpha / d}\right)
\end{aligned}
$$

with equality if $\left|n-n_{0}\right|_{\pi} \neq q^{-\alpha / d}$. The computation of $\nu_{\pi}(Q(n))$ from this equation is divided into three cases. Define $\beta=\lfloor\alpha / d\rfloor$.
Case 1: If $n \equiv n_{0} \bmod \pi^{\beta+1}$, then $\nu_{\pi}\left(n-n_{0}\right) \geq \beta+1>\alpha / d$, and it follows that

$$
\begin{equation*}
\left|n-n_{0}\right|_{\pi}=q^{-\nu_{\pi}\left(n-n_{0}\right)}<q^{-\alpha / d} \tag{5.7}
\end{equation*}
$$

Then $|n-r|_{\pi}=q^{-\alpha / d}$ and

$$
\begin{equation*}
\nu_{\pi}(Q(n))=-d \log _{q}|n-r|_{\pi}=\alpha \tag{5.8}
\end{equation*}
$$

Case 2: If $n \not \equiv n_{0} \bmod \pi^{\beta}$, then $\nu_{\pi}\left(n-n_{0}\right)<\beta \leq \alpha / d$, and

$$
\begin{equation*}
\left|n-n_{0}\right|_{\pi}=q^{-\nu_{\pi}\left(n-n_{0}\right)}>q^{-\alpha / d} \tag{5.9}
\end{equation*}
$$

In this case, $|n-r|_{\pi}=\left|n-n_{0}\right|_{\pi}$ and

$$
\begin{equation*}
\nu_{\pi}(Q(n))=-d \log _{q}|n-r|_{\pi}=d \nu_{\pi}\left(n-n_{0}\right) \tag{5.10}
\end{equation*}
$$

as claimed.

Case 3: The final case is $n \equiv n_{0} \bmod \pi^{\beta}$ and $n \not \equiv n_{0} \bmod \pi^{\beta+1}$. Then $\nu_{\pi}\left(n-n_{0}\right)=\beta$ and

$$
\begin{equation*}
\left|n-n_{0}\right|_{\pi}=q^{-\nu_{\pi}\left(n-n_{0}\right)}=q^{-\beta} . \tag{5.11}
\end{equation*}
$$

If α / d is not an integer, this implies that $\left|n-n_{0}\right|_{\pi}>q^{-\alpha / d}$, so that $|n-r|_{\pi}=$ $\left|n-n_{0}\right|_{\pi}$ as in Case 2, and

$$
\begin{equation*}
\nu_{\pi}(Q(n))=-d \log _{q}|n-r|_{\pi}=d \nu_{\pi}\left(n-n_{0}\right) \tag{5.12}
\end{equation*}
$$

On the other hand, if α / d is an integer then $\left|n-n_{0}\right|_{\pi}=q^{-\alpha / d}$. In this case, $|n-r|_{\pi} \leq q^{-\alpha / d}$ and

$$
\begin{equation*}
\nu_{\pi}(Q(n))=-d \log _{q}|n-r|_{\pi} \geq \alpha \tag{5.13}
\end{equation*}
$$

Since $\nu_{\pi}(Q(n)) \leq \alpha$ for all $n \in A$, it follows that $\nu_{\pi}(Q(n))=\alpha=d \nu_{\pi}(n-$ n_{0}), as claimed.

The proof of Theorem 5.1 is presented next, followed by the proof of Theorem 5.2.

Proof of Theorem 5.1. Let $n_{0} \in \mathbb{Z}$ with $Q\left(n_{0}\right) \equiv 0 \bmod p^{\alpha}$ and define $\beta=\lfloor\alpha / d\rfloor$. Assume first that $\alpha / d \notin \mathbb{Z}$. In the rational case, i.e. $\pi=p$, Theorem 5.3 shows that $\nu_{p}(Q(n))$ depends only on the residue of n modulo $p^{\beta+1}$. Therefore the period length of $V_{p}(Q)$ is at most $p^{\beta+1}$. Since α / d is not an integer and

$$
\begin{equation*}
\nu_{p}\left(Q\left(n_{0}+p^{\beta}\right)\right)=d \nu_{p}\left(p^{\beta}\right)=d \beta \neq \alpha=\nu_{p}\left(Q\left(n_{0}\right)\right), \tag{5.14}
\end{equation*}
$$

the period length is not p^{β}; therefore the period length is $p^{\beta+1}=p^{\lceil\alpha / d\rceil}$ as claimed.

In the case $\alpha / d \in \mathbb{Z}$ (equal to β), Theorem 5.3 gives

$$
\nu_{p}(Q(n))=\left\{\begin{array}{lll}
d \nu_{p}\left(n-n_{0}\right) & \text { if } n \not \equiv n_{0} & \bmod p^{\beta+1} \\
\alpha & \text { if } n \equiv n_{0} & \bmod p^{\beta+1}
\end{array}\right.
$$

If $n \equiv n_{0} \bmod p^{\beta}$ and $n \not \equiv n_{0} \bmod p^{\beta+1}$, then $d \nu_{p}\left(n-n_{0}\right)=\alpha$ and one can move this case to obtain

$$
\nu_{p}(Q(n))=\left\{\begin{array}{lll}
d \nu_{p}\left(n-n_{0}\right) & \text { if } n \not \equiv n_{0} & \bmod p^{\beta} \\
\alpha & \text { if } n \equiv n_{0} & \bmod p^{\beta}
\end{array}\right.
$$

It follows that the period length of $V_{p}(Q)$ is at most p^{β}. Since

$$
\nu_{p}\left(Q\left(n_{0}+p^{\beta-1}\right)\right)=d \nu_{p}\left(p^{\beta-1}\right)=d(\beta-1) \neq \alpha=\nu_{p}\left(Q\left(n_{0}\right)\right),
$$

the period length is not $p^{\beta-1}$; therefore the period length is $p^{\beta}=p^{\lceil\alpha / d\rceil}$.
The general case follows from the proof of Theorem 5.1.
Proof of Theorem 5.2. Let m be an integer. Since $\mathfrak{p} \cap \mathbb{Z}=p \mathbb{Z}$, then π divides $Q(m)$ if and only if p divides $Q(m)$ (since the coefficients of $Q(x)$ are rational integers). Therefore the sequences $\left\{\nu_{\pi}(Q(n)): n \in \mathbb{N}\right\}$ and
$\left\{\nu_{p}(Q(n)): n \in \mathbb{N}\right\}$ have the same period length. Let α_{1} be the largest nonnegative integer such that $Q(x) \equiv 0 \bmod p^{\alpha_{1}}$ has a solution in \mathbb{Z}. Similarly, let α be the largest non-negative integer such that $Q(x) \equiv 0 \bmod \pi^{\alpha}$ has a solution in \mathbb{Z}. From the proof of Theorem 5.1 one knows that the period length of these sequences is $p^{\left\lceil\alpha_{1} / d\right\rceil}$. However, it follows from $e=\nu_{\pi}(p)$ that $\alpha=e \alpha_{1}$. Thus, the period length is given by

$$
\begin{equation*}
p^{\left\lceil\alpha_{1} / d\right\rceil}=p^{\lceil\alpha /(e d)\rceil} . \tag{5.15}
\end{equation*}
$$

This concludes the proof.

6. A collection of examples

This final section presents some examples that illustrate the preceding theorems.

Example 6.1. Let $Q(x)=x^{3}+9 x^{2}+81 x+243$ and $p=3$. Dumas' criterion shows that $Q(x)$ is irreducible over \mathbb{Z}_{3}. A direct calculation yields $\alpha=5$, i.e. $Q(x) \equiv 0 \bmod 3^{5}$ has solutions, but $Q(x) \equiv 0 \bmod 3^{6}$ does not. Theorem 5.1 implies that $V_{3}(Q)$ is periodic with period length 9 . The explicit 3-adic valuation of $Q(n)$ for $n \in \mathbb{Z}$ is provided by Theorem 5.3. In this case, $\beta=1$ and choosing $n_{0}=0$ gives

$$
\nu_{3}(Q(n))= \begin{cases}0 & \text { if } n \not \equiv 0 \quad \bmod 3 \\ 3 & \text { if } n \equiv 3,6 \quad \bmod 9 \\ 5 & \text { if } n \equiv 0 \quad \bmod 9\end{cases}
$$

Therefore the fundamental period of $V_{3}(Q)$ is given by $5,0,0,3,0,0,3,0,0$.
The next example offers an interesting twist, using the periodicity of $V_{p}(Q)$ to determine the reducibility of a polynomial Q.
Example 6.2. Take $Q(x)=x^{4}+x^{3}+x^{2}+3 x+3 \in \mathbb{Z}_{3}[x]$ and check $\alpha=3$. Suppose Q is irreducible in $\mathbb{Z}_{3}[x]$. Theorem 5.1 then implies that $V_{3}(Q)$ is periodic with period length 3. But $V_{3}(Q)=\{1,2,0,1,3,0, \ldots\}$ does not have period length 3 ; this contradicts the assumption, and therefore Q is reducible. Now $Q(x) \equiv x^{2}(x+2)^{2} \bmod 3$ and Hensel's lemma implies that Q factors in the form

$$
\begin{equation*}
Q(x)=\left(x^{2}+\gamma_{1} x+\gamma_{0}\right)\left(x^{2}+\beta_{1} x+\beta_{0}\right) \tag{6.1}
\end{equation*}
$$

with $\gamma_{j}, \beta_{j} \in \mathbb{Z}_{3}$. The polynomials are chosen so that
(6.2) $x^{2}+\gamma_{1} x+\gamma_{2} \equiv x^{2} \quad \bmod 3$ and $x^{2}+\beta_{1} x+\beta_{2} \equiv x^{2}+x+1 \bmod 3$.

A direct application of Hensel's lemma gives the expansions

$$
\begin{aligned}
& \gamma_{0}=p+p^{2}+p^{3}+2 p^{4}+2 p^{7}+2 p^{9}+\cdots \\
& \gamma_{1}=2 p^{2}+2 p^{3}+p^{4}+p^{7}+2 p^{8}+\cdots \\
& \beta_{0}=1+2 p+2 p^{2}+p^{3}+2 p^{4}+p^{5}+p^{6}+p^{7}+\cdots \\
& \beta_{1}=1+p^{2}+p^{4}+2 p^{5}+2 p^{6}+p^{7}+2 p^{9}+\cdots,
\end{aligned}
$$

with $p=3$. The reader can now check that $V_{3}\left(Q_{1}\right)$ has period length 3 and $V_{3}\left(Q_{2}\right)$ has period length 9 . It follows that $V_{3}(Q)$ is periodic with period length 9 , and the fundamental period is $1,2,0,1,3,0,1,2,0$.

The final examples show how Theorem 5.2 and Theorem 5.3 work in the more general setting of a number field.

Example 6.3. Consider the number field $K=\mathbb{Q}(\sqrt[3]{2})$ and its ring of integers $\mathbb{Z}[\sqrt[3]{2}]$. Choose the prime ideal $\mathfrak{p}=(\sqrt[3]{2})$ and $\pi=\sqrt[3]{2}$. Observe that π lies above the rational prime 2. Let $Q(x)=x^{2}-384=x^{2}-2^{7} \cdot 3$. In this case, $\alpha=21, \beta=10$, and $n_{0}=0$. Theorem 5.3 implies that

$$
\nu_{\pi}(Q(n))=\left\{\begin{array}{lll}
2 \nu_{\pi}(n) & \text { if } n \not \equiv 0 & \bmod \pi^{11} \tag{6.3}\\
21 & \text { if } n \equiv 0 & \bmod \pi^{11}
\end{array}\right.
$$

Using the fact that $e=\nu_{\pi}(2)=3$, then equation (6.3) can be written as

$$
\nu_{\pi}(Q(n))=\left\{\begin{array}{lll}
0 & \text { if } n \equiv 1 & \bmod 2 \tag{6.4}\\
6 & \text { if } n \equiv 2 & \bmod 4 \\
12 & \text { if } n \equiv 4 & \bmod 8 \\
18 & \text { if } n \equiv 8 & \bmod 16 \\
21 & \text { if } n \equiv 0 & \bmod 16
\end{array}\right.
$$

Finally, Theorem 5.2 implies that the period length is given by $2^{\lceil\alpha /(e d)\rceil}=$ $2^{[21 / 6\rceil}=16$. Indeed, the fundamental period of this sequence is

$$
21,0,6,0,12,0,6,0,18,0,6,0,12,0,6,0 .
$$

The fundamental period of $V_{2}(Q)$ is

$$
7,0,2,0,4,0,2,0,6,0,2,0,4,0,2,0 .
$$

The next example deals with the case when the values of n are chosen from a subring A different from \mathbb{Z}.

Example 6.4. Consider the same number field $K=\mathbb{Q}(\sqrt[3]{2})$, but now choose the prime ideal $\mathfrak{p}=(1+\sqrt[3]{2})$ with uniformizer $\pi=1+\sqrt[3]{2}$. Note that

$$
\pi^{3}=3+3 \sqrt[3]{2}+3(\sqrt[3]{2})^{2}=3(1+\sqrt[3]{2}+\sqrt[3]{4})
$$

Let $u=1+\sqrt[3]{2}+\sqrt[3]{4}$ and $v=\sqrt[3]{2}-1$ and observe that

$$
u v=(1+\sqrt[3]{2}+\sqrt[3]{4})(\sqrt[3]{2}-1)=1
$$

thus u and v are units. This implies that $3=v \pi^{3}$ and therefore $\mathcal{O} / \pi \mathcal{O}=\mathbb{F}_{3}$.
Consider the polynomial $Q(x)=x^{2}-\pi^{5} \in(\mathbb{Z}[\sqrt[3]{2}])[x]$. Observe that in this case, the subring $A \subseteq \mathcal{O}$ from Theorem 5.3 is $A=\mathbb{Z}[\sqrt[3]{2}]$. For this polynomial, $\alpha=5, \beta=2$, and $n_{0}=0$. Theorem 5.3 implies

$$
\nu_{\pi}(Q(n))= \begin{cases}2 \nu_{\pi}(n) & \text { if } n \not \equiv 0 \quad \bmod \pi^{3} \tag{6.5}\\ 5 & \text { if } n \equiv 0 \quad \bmod \pi^{3}\end{cases}
$$

This equation can be simplified to

$$
\nu_{\pi}(Q(n))= \begin{cases}0 & \text { if } n \equiv 1,2 \quad \bmod \pi \tag{6.6}\\ 2 & \text { if } n \equiv \pi, 2 \pi \quad \bmod \pi^{2} \\ 4 & \text { if } n \equiv \pi^{2}, 2 \pi^{2} \quad \bmod \pi^{3} \\ 5 & \text { if } n \equiv 0 \quad \bmod \pi^{3} .\end{cases}
$$

If n is restricted to the subring $\mathbb{Z} \subseteq A$, then

$$
\nu_{\pi}(Q(n))= \begin{cases}0 & \text { if } n \equiv 1,2 \quad \bmod 3 \tag{6.7}\\ 5 & \text { if } n \equiv 0 \quad \bmod 3\end{cases}
$$

In this case, the period length is clearly 3 .

Acknowledgments

The authors thank the referee for helpful suggestions. The first author acknowledges the partial support of UPR-FIPI 1890015.00. The second author acknowledges the partial support of NSF-DMS 1112656. The last author was partially supported by a Marie Curie Actions COFUND Fellowship.

References

[1] T. Amdeberhan, D. Callan, and V. Moll. Valuations and combinatorics of truncated exponential sums. INTEGERS: The Electronic Journal of Combinatorial Number Theory, 13:\#A21, 2013.
[2] T. Amdeberhan, D. Manna, and V. Moll. The 2-adic valuation of a sequence arising from a rational integral. Jour. Comb. A, 115:1474-1486, 2008.
[3] T. Amdeberhan, D. Manna, and V. Moll. The 2-adic valuation of Stirling numbers. Experimental Mathematics, 17:69-82, 2008.
[4] T. Amdeberhan, L. Medina, and V. Moll. Asymptotic valuations of sequences satisfying first order recurrences. Proc. Amer. Math. Soc., 137:885-890, 2009.
[5] J. Bell. p-adic valuations and k-regular sequences. Disc. Math., 307:3070-3075, 2007.
[6] A. Berribeztia, L. Medina, A. Moll, V. Moll, and L. Noble. The p-adic valuation of Stirling numbers. Journal for Algebra and Number Theory Academia, 1:1-30, 2010.
[7] E. Beyerstedt, V. Moll, and X. Sun. The p-adic valuation of ASM numbers. Journal of Integer Sequences, 14:art. 11.8.7, 2011.
[8] G. Boros, V. Moll, and J. Shallit. The 2-adic valuation of the coefficients of a polynomial. Scientia, Series A, 7:37-50, 2001.
[9] A. Byrnes, J. Fink, G. Lavigne, I. Nogues, S. Rajasekaran, A. Yuan, L. Almodovar, X. Guan, A. Kesarwani, L. Medina, E. Rowland, and V. Moll. A closed-form solution might be given by a tree: the valuation of quadratic polynomials. Submitted for publication, 2015.
[10] J. W. S. Cassels. Local Fields, volume 3 of London Mathematical Society Student Texts. Cambridge University Press, 1986.
[11] F. Castro, O. Gonzalez, and L. Medina. The p-adic valuation of Eulerian numbers: trees and Bernoulli numbers. Experimental Mathematics, 24 (2), 183-195, 2015.
[12] H. Cohen. On the 2-adic valuation of the truncated polylogarithmic series. The Fibonacci Quarterly, 37:117-121, 1999.
[13] H. Cohn. 2-adic behavior of numbers of domino tilings. Elec. Jour. Comb., 6:1-14, 1999.
[14] G. Dumas. Sur quelques cas d'irréductibilité des polynômes à coefficientes rationnels. Journal de Math. Pures et Appl., 12:191-258, 1906.
[15] F. Gouvêa. p-adic Numbers: An Introduction second edition. Springer-Verlag, 1997.
[16] A. M. Legendre. Théorie des Nombres. Firmin Didot Frères, Paris, 1830.
[17] L. Medina and E. Rowland. p-regularity of the p-adic valuation of the Fibonacci sequence. The Fibonacci Quarterly, 53(3), 265-271, 2015.
[18] M. R. Murty. Introduction to p-adic Analytic Number Theory, volume 27 of Studies in Advanced Mathematics. American Mathematical Society, 1st edition, 2002.
[19] A. Straub, V. Moll, and T. Amdeberhan. The p-adic valuation of k-central binomial coefficients. Acta Arith., 149:31-42, 2009.
[20] X. Sun and V. Moll. The p-adic valuation of sequences counting alternating sign matrices. Journal of Integer Sequences, 12:09.3.8, 2009.
[21] X. Sun and V. Moll. A binary tree representation for the 2-adic valuation of a sequence arising from a rational integral. INTEGERS: The Electronic Journal of Combinatorial Number Theory, 10:211-222, 2010.

Departament of Mathematics, University of Puerto Rico, Rio Piedras, San Juan, PR 00936-8377

E-mail address: luis.medina17@upr.edu
Department of Mathematics, Tulane University, New Orleans, LA 70118
E-mail address: vhm@tulane.edu
University of Liege, Département de Mathématiques, 4000 Liège, Belgium
Current address: Department of Mathematics, Hofstra University, Hempstead, NY
E-mail address: eric.rowland@hofstra.edu

[^0]: Date: March 28, 2017.
 2010 Mathematics Subject Classification. Primary 11B83, Secondary 11Y55, 11S05.
 Key words and phrases. valuations, polynomial sequences, Hensel's lemma, p-adic integers.

