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Abstract. For a prime p and an integer x, the p-adic valuation of
x is denoted by νp(x). For a polynomial Q with integer coefficients,
the sequence of valuations νp(Q(n)) is shown to be either periodic or
unbounded. The first case corresponds to the situation where Q has no
roots in the ring of p-adic integers. In the periodic situation, the period
length is determined.

1. Introduction

For p prime and n ∈ N, the exponent of the highest power of p that
divides n is called the p-adic valuation of n. This is denoted by νp(n).
Given a function f : N → N, the study of sequences νp(f(n)) goes back to
at least Legendre [16], who established the classical formula

(1.1) νp(n!) =

∞∑
k=1

⌊
n

pk

⌋
=
n− sp(n)

p− 1
,

where sp(n) is the sum of the digits of n in base p.
The work presented here forms part of a general project to analyze the

sequence

Vx = {νp(xn) : n ∈ N}
for given sequence x = {xn}. Valuations have been studied for the Stirling
numbers S(n, k) [3, 6], sequences satisfying first-order recurrences [4], the
Fibonacci numbers [17], the ASM (alternating sign matrices) numbers [7,
20], and coefficients of a polynomial connected to a quartic integral [2, 8, 21].
Other results of this type appear in [1, 11, 12, 13, 19].

Consider the sequence of valuations

(1.2) Vp(Q) = {νp(Q(n)) : n ∈ N},

for a prime p and a polynomial Q ∈ Z[x]. The polynomial Q is assumed to
be irreducible over Z; otherwise the identity

(1.3) Vp(Q1Q2) = Vp(Q1) + Vp(Q2)

Date: March 28, 2017.
2010 Mathematics Subject Classification. Primary 11B83, Secondary 11Y55, 11S05.
Key words and phrases. valuations, polynomial sequences, Hensel’s lemma, p-adic

integers.

1



2 LUIS A. MEDINA, VICTOR H. MOLL, AND ERIC ROWLAND

can be used to express Vp(Q) in terms of its irreducible factors. The first
result established in this paper is that Vp(Q) is either periodic or unbounded
(Theorem 2.1). In the case of a periodic sequence, the period length is explic-
itly determined (Theorem 5.1). The special case of quadratic polynomials
is discussed in detail in Sections 3 and 4.

The analysis includes the p-adic numbers Qp and the ring of integers Zp.
Recall that each x ∈ Qp can be expressed in the form

(1.4) x =
∞∑

k=k0

ckp
k

with 0 ≤ ck ≤ p− 1 and ck0 6= 0.
The p-adic integers Zp correspond to the case k0 ≥ 0, and invertible

elements in this ring have k0 = 0. The set of invertible elements is denoted
by Z×p . The p-adic absolute value of x ∈ Qp is defined by |x|p = p−k0 . In

particular, x ∈ Z×p if and only if x ∈ Zp and |x|p = 1.
The determination of the sequence Vp(Q) will require examining the irre-

ducibility of Q in Zp[x]. Some classical criteria are stated below.

Theorem 1.1 (Eisenstein criterion [15, Proposition 5.3.11]). Let f(x) =
anx

n + · · ·+ a1x+ a0 ∈ Zp[x]. Assume

(1) νp(an) = 0,
(2) νp(aj) > 0 for 0 ≤ j < n, and
(3) νp(a0) = 1.

Then f is irreducible in Zp[x].

Theorem 1.2 (Hensel’s lemma, polynomial version [15, Theorem 3.4.6]).
Let f ∈ Zp[x] and assume there are non-constant polynomials g, h ∈ Zp[x],
such that

(1) g is monic,
(2) g and h are coprime modulo p, and
(3) f(x) ≡ g(x)h(x) mod p.

Then f is reducible in Zp[x].

Theorem 1.3 (Dumas Irreducibility Criterion [14]). Let f ∈ Zp[x] be given
by

(1.5) f(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an.

Suppose that

(1) νp(a0) = 0,
(2) νp(ai)/i > νp(an)/n for 1 ≤ i ≤ n− 1, and
(3) gcd(νp(an), n) = 1.

Then f is irreducible in Zp[x].
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2. Boundedness of the sequence Vp(Q).

This section characterizes the boundedness of the sequence Vp(Q) in terms
of the existence of zeros of the polynomial Q in Zp. Bell [5] showed that
Vp(Q) is periodic in the case that Q has no zeros in Zp and gave a bound
for the minimal period length.

Theorem 2.1. Let p be a prime and Q ∈ Z[x]. Then Vp(Q) is either periodic
or unbounded. Moreover, Vp(Q) is periodic if and only if Q has no zeros in
Zp. In the periodic case, the minimal period length is a power of p.

Proof. Assume that Q has no zeros in Zp. If Vp(Q) is not bounded there
exists a sequence nj → ∞ such that νp(Q(nj)) → ∞. The compactness of
Zp (see [18]) gives a subsequence converging to n∞ ∈ Zp. Then Q(n∞) is
divisible by arbitrary large powers of p, thus Q(n∞) = 0. This contradiction
shows Vp(Q) is bounded. In order to show Vp(Q) is periodic, define

(2.1) d = sup
{
k : pk divides Q(n) for some n ∈ Z

}
.

Then d ≥ 0 and

(2.2) Q(n+ pd+1) = Q(n) +Q′(n)pd+1 +O(pd+2).

Since νp(Q(n)) ≤ d, it follows that

(2.3) νp

(
Q(n+ pd+1)

)
= νp(Q(n)),

proving that νp(Q(n)) is periodic. The minimal period length is a divisor of

pd+1, thus a power of the prime p.
On the other hand, if Q has a zero x = α in Zp,

(2.4) Q(x) = (x− α)Q1(x), with Q1 ∈ Zp[x].

Then νp(Q(n)) ≥ νp(n− α), and Vp(Q) is unbounded. �

The most basic result for establishing the existence of a zero of a polyno-
mial in Zp is Hensel’s lemma [15, Theorem 3.4.1]. In the following form, it
states that a simple root of a polynomial modulo p has a unique lifting to a
root in Zp.

Theorem 2.2 (Hensel’s lemma). If f ∈ Z[x] and a ∈ Zp satisfies

(2.5) f(a) ≡ 0 mod p and f ′(a) 6≡ 0 mod p

then there is a unique α ∈ Zp such that f(α) = 0 and α ≡ a mod p.

The following extension appears in [10, Lemma 3.1].

Proposition 2.3. Assume f ∈ Z[x] and a ∈ Zp satisfies

(2.6) νp(f(a)) > 2νp(f
′(a)).

Then there is α ∈ Zp with f(α) = 0 and α ≡ a mod p.
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3. Quadratic polynomials and the prime p = 2

Let a ∈ Z and Qa(x) = x2 − a. This section considers the periodicity
of the sequence {ν2(n2 − a)}. In view of Theorem 2.1, this is equivalent to
the existence of a zero of Qa in Z2. An elementary proof of Proposition 3.1
appears in [9]. Define c and µ(a) by

(3.1) a = 4µ(a)c

with c 6≡ 0 mod 4.

Proposition 3.1. The polynomial Qa has no zeros in Z2 if and only if c 6≡ 1
mod 8.

Proof. Assume first that Qa has no zeros in Z2 and c ≡ 1 mod 8. If a is
odd, then a = c = 1 + 8j with j ∈ Z. Then Qa(1) = 1− a = −8j and

(3.2) |Qa(1)|2 ≤ 1
8 and |Q′a(1)|2 = 1

2 .

Therefore |Qa(1)|2 < (|Q′a(1)|2)2 and Proposition 2.3 produces α ∈ Z2 with
Qa(α) = 0. This is a contradiction.

In the case a even, write a = 4i(1 + 8j) with i > 0 and i ∈ Z. The
previous case shows the existence of α ∈ Z2 with α2 = (1 + 8j). Then
β = 2iα satisfies Q2(β) = 0, yielding a contradiction.

Assume now that c 6≡ 1 mod 8. If a is odd, then a = c and a ≡ 3, 5, 7
mod 8. A simple calculation shows that

(3.3) ν2(n
2 − 8i− 3) = ν2(n

2 − 8i− 7) =

{
1 if n is odd

0 if n is even,

and

(3.4) ν2(n
2 − 8i− 5) =

{
2 if n is odd

0 if n is even.

For these values of a, the sequence V2(Q) is bounded. Theorem 2.1 now
shows that Qa has no zeros in Z2.

If a is even, then it can be written as a = 4j(8i+ r) with j ≥ 0 and r =
2, 3, 5, 6, 7. The excluded case r = 4 can be reduced to one of the residues
listed above by consideration of the parity of the index i. Now suppose Qa(x)
has a zero β ∈ Z2; that is, β2 = a = 4j(8i+r). Then α = β/2j ∈ Z2 satisfies
α2 = 8i+r. Each of these cases lead to a contradiction. Indeed, if r = 3, 5, 7
the valuations ν2(n

2 − 8i − r) are bounded contradicting Theorem 2.1. In
the remaining two cases, the polynomial x2 − 8i − r is irreducible over Z2

by a direct application of the Eisenstein criterion. Therefore Qa(x) has no
zeros. This concludes the proof. �

The previous result is now restated in terms of periodicity. The explicit
period length is given in Section 5.
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Theorem 3.2. Let Q(x) = x2 − a. Define c by the relation a = 4µ(a)c,
with c 6≡ 0 mod 4. Then the sequence V2(Q) is periodic if and only if c 6≡ 1
mod 8.

Combining Theorem 2.1, Proposition 3.1, and the classical result of La-
grange on representations of integers as sums of squares shows that the
sequence of valuations {ν2(n2 + b) : n ∈ N} is bounded if and only if b
cannot be written as a sum of three squares.

4. Quadratic polynomials and an odd prime

This section extends the results of Section 3 to the case of odd primes.

Theorem 4.1. Let p 6= 2 be a prime, and let a ∈ Z with k = νp(a). The

sequence νp(n
2− a) is periodic if and only if k is odd or a/pk is a quadratic

non-residue modulo p. If it is periodic, its period length is pdk/2e.

Proof. Let p 6= 2. Hensel’s lemma shows that an integer a not divisible by
p has a square root in Zp if and only if a is a quadratic residue modulo
p. This implies that a ∈ Qp is a square if and only if it can be written as
a = p2mu2 with m ∈ Z and u ∈ Z×p a p-adic unit. Then x2 − a has a zero in

Zp is equivalent to k being even and a/pk being a quadratic residue modulo
p. This proves the first part of the theorem.

Now assume that νp(n
2−a) is periodic. It is shown that its period length

is given by pdk/2e. Suppose first that k is odd. Let k∗ = (k + 1)/2 so that
dk/2e = k∗ and

(4.1) νp((n+ pk∗)2 − a) = νp(n
2 − a+ 2pk∗n+ p2k∗).

It is shown that

(4.2) νp(2p
k∗n+ p2k∗) > νp(n

2 − a),

which implies νp((n + pk∗)2 − a) = νp(n
2 − a). Write n = pνp(n)n0 and

a = p2k∗+1a0. Finally, let γ = min(νp(n), k∗). Then

νp

(
pk∗(2n+ pk∗)

)
≥ k∗ + min(νp(2n), k∗)(4.3)

= k∗ + γ

> k∗ + γ + νp(p
2νp(n)−k∗−γn20 − pk∗−1−γa0)

= νp(p
2νp(n)n20 − p2k∗−1a0)

= νp(n
2 − a)

since 0 > νp(p
2νp(n)−k∗−γn20 − pk∗−1−γa0). To justify this last inequality,

observe that if νp(n) ≥ k∗ then 2νp(n) − k∗ − γ = 2(νp(n) − k∗) ≥ 0 and
k∗ − 1 − γ = −1 < 0, and if ν < k∗ then 2ν − k∗ − γ = ν − k∗ < 0 and
k∗ − 1− γ ≥ 0.
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Suppose now that k is even and a/pk a quadratic non-residue. Then, there
is m ∈ N0 and a0 ∈ Z such that a = p2ma0 with a0 a quadratic non-residue
modulo p. It is now shown that

(4.4) νp((n+ pm)2 − a) = νp(n
2 − a)

and that pm is minimal with this property. If m = 0, then (4.4) becomes
νp((n+1)2) = νp(n

2−a). Both sides vanish since a is a quadratic non-residue
modulo p. Now, for m > 0, the statement (4.4) becomes

(n+ pm)2 − a = n2 + 2npm + p2m − p2ma0.
The proof of (4.4) is divided into cases. In the argument given below, it is
assumed that gcd(n, n0) = 1.

Case 1: Suppose that n = pβn0 with β, n0 ∈ Z and β < m. Observe that

νp(n
2 − a) = νp(p

2β − p2ma0) = 2β

and
νp(2p

mn+ p2m) = β +m > 2β.

Then νp((n+ pm)2 − a) = νp(n
2 − a) as claimed.

Case 2: Suppose that n = pmn0 with n0 ∈ Z. Note that

νp(n
2 − a) = νp(p

2m(n20 − a0)) = 2m,

where the last equality follows from the fact that p does not divide n20 − a0,
since a0 is a quadratic non-residue modulo p. On the other hand,

νp((n+ pm)2 − a) = νp(p
2mn20 + 2p2mn0 + p2m − p2ma0)

= νp(p
2m[n20 + 2n0 + 1− a0])

= νp(p
2m[(n0 + 1)2 − a0])

= 2m.

This gives (4.4).

Case 3: Finally, suppose that n = pβn0 with β, n0 ∈ Z and β > m. It is
easy to see that νp(n

2 − a) = 2m. Then

(n+ pm)− a = n2 + 2pmn+ p2m − p2ma0
= p2βn20 + 2pm+βn0 + p2m − p2ma0
= p2m(p2β−2mn20 + 2pβ−m + (1− a0)).

Now 1−a0 6≡ 0 mod p since a0 is a quadratic non-residue. Therefore p does
not divide 1− a0 and (4.4) follows.

The conclusion is that νp((n+ pdk/2e)2− a) = νp(n
2− a) for every n ∈ N.

Therefore, the period length is a divisor of pdk/2e. The period length cannot
be smaller, since for n = 0

νp((n+ pi)2 − a) = νp(p
2i − a) = 2i 6= k = νp(−a) = νp(n

2 − a).
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This completes the proof. �

5. The sequence Vp(Q) for a general polynomial

This section extends the results described in the previous two sections to
the more general case of an arbitrary prime p and an arbitrary polynomial
in Zp[x].

Let Q ∈ Zp[x]. The p-adic Weierstrass preparation theorem [15, Theo-
rem 6.2.6] implies the existence of a factorization Q(x) = pmuQ1(x)H(x)
where Q1(x) is a monic polynomial with coefficients in Zp, u ∈ Z×p , m is an
integer, and H(x) is a series that converges in Zp with the property that
νp(H(x)) = 0 for every x ∈ Zp. Therefore,

(5.1) Vp(Q) = {νp(Q(n)) : n ∈ N}
is a shift of Vp(Q1), showing that the general case can be reduced to the
case when Q(x) is a monic polynomial.

Theorem 5.1. Let Q ∈ Z[x] be a monic polynomial of degree d ≥ 2, ir-
reducible over Zp. Let α ≥ 0 be the largest non-negative integer such that
Q(x) ≡ 0 mod pα for some x ∈ Z. Then Vp(Q) is periodic with period

length pdα/de.

In fact a more general result, where Q is replaced with an arbitrary num-
ber field, can be proved in a similar way. Let K be a number field with cor-
responding number ring R. Choose a prime ideal p of R and let ν : K× → Z
be the corresponding valuation. Let Kp be the completion of K with respect
to ν and let O = {a ∈ Kp : ν(a) ≥ 0} be the closed unit ball. Let π ∈ O be
a uniformizer, that is, ν(π) = 1, and relabel the valuation as νπ.

Theorem 5.2. Let Q ∈ Z[x] be a monic polynomial of degree d ≥ 2, irre-
ducible over O. Let α ≥ 0 be the largest non-negative integer such that
Q(x) ≡ 0 mod πα for some x ∈ Z. Suppose the residue field O/πO
has characteristic p, and let e = νπ(p) be the ramification index. Then

{νπ(Q(n)) : n ∈ N} is periodic with period length pdα/(ed)e.

The proofs of Theorems 5.1 and 5.2 are based on an expression for the
valuation νπ(Q(n)).

Theorem 5.3. Let A ⊆ O be a subring and let Q(x) ∈ A[x] be monic
polynomial of degree d ≥ 2, irreducible over O. Let α ≥ 0 be the largest
non-negative integer such that Q(x) ≡ 0 mod πα for some x ∈ A. Choose
n0 ∈ A such that Q(n0) ≡ 0 mod πα. Then, for n ∈ A,

νπ(Q(n)) =

{
d νπ(n− n0) if n 6≡ n0 mod πbα/dc+1

α if n ≡ n0 mod πbα/dc+1.

Proof. Define the absolute value |·|π on K as |a|π = q−νπ(a), where |O/πO| =
q. Write

(5.2) Q(x) = (x− r1)(x− r2) · · · (x− rd)
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over a splitting field for Q. Let r = r1 and define E = Kp(r). Then E/Kp is
a field extension of degree d and the π-adic absolute value extends to E by

(5.3) |s|π = | normE/Kp
(s)|1/dπ .

The norm of an element s ∈ E is

(5.4) normE/Kp
(s) = (−1)mlal0,

where xm + am−1x
m−1 + · · ·+ a1x+ a0 is the minimal polynomial of s over

Kp and l is the degree of the extension of E/Kp(s).
For every element n ∈ A, the minimal polynomial of n− r is

(5.5) (x− (n− r1))(x− (n− r2)) · · · (x− (n− rd)).
Therefore

|n− r|π = |(n− r1) · · · (n− rd)|1/dπ

= |Q(n)|1/dπ

=
(
q−νπ(Q(n))

)1/d
.

This gives

(5.6) νπ(Q(n)) = −d logq |n− r|π
(where logq is the real logarithm to base q). Now take any n0 ∈ A such that
Q(n0) ≡ 0 mod qα. Then

|n− r|π ≤ max (|n− n0|π, |n0 − r|π)

= max
(
|n− n0|π, q−νπ(Q(n0))/d

)
= max

(
|n− n0|π, q−α/d

)
with equality if |n− n0|π 6= q−α/d. The computation of νπ(Q(n)) from this
equation is divided into three cases. Define β = bα/dc.

Case 1: If n ≡ n0 mod πβ+1, then νπ(n−n0) ≥ β+ 1 > α/d, and it follows
that

(5.7) |n− n0|π = q−νπ(n−n0) < q−α/d.

Then |n− r|π = q−α/d and

(5.8) νπ(Q(n)) = −d logq |n− r|π = α.

Case 2: If n 6≡ n0 mod πβ, then νπ(n− n0) < β ≤ α/d, and

(5.9) |n− n0|π = q−νπ(n−n0) > q−α/d.

In this case, |n− r|π = |n− n0|π and

(5.10) νπ(Q(n)) = −d logq |n− r|π = d νπ(n− n0),
as claimed.
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Case 3: The final case is n ≡ n0 mod πβ and n 6≡ n0 mod πβ+1. Then
νπ(n− n0) = β and

(5.11) |n− n0|π = q−νπ(n−n0) = q−β.

If α/d is not an integer, this implies that |n−n0|π > q−α/d, so that |n−r|π =
|n− n0|π as in Case 2, and

(5.12) νπ(Q(n)) = −d logq |n− r|π = d νπ(n− n0).

On the other hand, if α/d is an integer then |n−n0|π = q−α/d. In this case,

|n− r|π ≤ q−α/d and

(5.13) νπ(Q(n)) = −d logq |n− r|π ≥ α.

Since νπ(Q(n)) ≤ α for all n ∈ A, it follows that νπ(Q(n)) = α = d νπ(n −
n0), as claimed. �

The proof of Theorem 5.1 is presented next, followed by the proof of
Theorem 5.2.

Proof of Theorem 5.1. Let n0 ∈ Z with Q(n0) ≡ 0 mod pα and define
β = bα/dc. Assume first that α/d 6∈ Z. In the rational case, i.e. π = p,
Theorem 5.3 shows that νp(Q(n)) depends only on the residue of n modulo

pβ+1. Therefore the period length of Vp(Q) is at most pβ+1. Since α/d is
not an integer and

(5.14) νp(Q(n0 + pβ)) = d νp(p
β) = d β 6= α = νp(Q(n0)),

the period length is not pβ; therefore the period length is pβ+1 = pdα/de as
claimed.

In the case α/d ∈ Z (equal to β), Theorem 5.3 gives

νp(Q(n)) =

{
d νp(n− n0) if n 6≡ n0 mod pβ+1

α if n ≡ n0 mod pβ+1.

If n ≡ n0 mod pβ and n 6≡ n0 mod pβ+1, then d νp(n − n0) = α and one
can move this case to obtain

νp(Q(n)) =

{
d νp(n− n0) if n 6≡ n0 mod pβ

α if n ≡ n0 mod pβ.

It follows that the period length of Vp(Q) is at most pβ. Since

νp(Q(n0 + pβ−1)) = d νp(p
β−1) = d (β − 1) 6= α = νp(Q(n0)),

the period length is not pβ−1; therefore the period length is pβ = pdα/de. �

The general case follows from the proof of Theorem 5.1.

Proof of Theorem 5.2. Let m be an integer. Since p ∩ Z = pZ, then π
divides Q(m) if and only if p divides Q(m) (since the coefficients of Q(x)
are rational integers). Therefore the sequences {νπ(Q(n)) : n ∈ N} and
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{νp(Q(n)) : n ∈ N} have the same period length. Let α1 be the largest non-
negative integer such that Q(x) ≡ 0 mod pα1 has a solution in Z. Similarly,
let α be the largest non-negative integer such that Q(x) ≡ 0 mod πα has
a solution in Z. From the proof of Theorem 5.1 one knows that the period
length of these sequences is pdα1/de. However, it follows from e = νπ(p) that
α = eα1. Thus, the period length is given by

(5.15) pdα1/de = pdα/(ed)e.

This concludes the proof. �

6. A collection of examples

This final section presents some examples that illustrate the preceding
theorems.

Example 6.1. Let Q(x) = x3 + 9x2 + 81x + 243 and p = 3. Dumas’
criterion shows that Q(x) is irreducible over Z3. A direct calculation yields
α = 5, i.e. Q(x) ≡ 0 mod 35 has solutions, but Q(x) ≡ 0 mod 36 does
not. Theorem 5.1 implies that V3(Q) is periodic with period length 9. The
explicit 3-adic valuation of Q(n) for n ∈ Z is provided by Theorem 5.3. In
this case, β = 1 and choosing n0 = 0 gives

ν3(Q(n)) =


0 if n 6≡ 0 mod 3

3 if n ≡ 3, 6 mod 9

5 if n ≡ 0 mod 9.

Therefore the fundamental period of V3(Q) is given by 5, 0, 0, 3, 0, 0, 3, 0, 0.

The next example offers an interesting twist, using the periodicity of
Vp(Q) to determine the reducibility of a polynomial Q.

Example 6.2. Take Q(x) = x4 +x3 +x2 + 3x+ 3 ∈ Z3[x] and check α = 3.
Suppose Q is irreducible in Z3[x]. Theorem 5.1 then implies that V3(Q) is
periodic with period length 3. But V3(Q) = {1, 2, 0, 1, 3, 0, . . . } does not
have period length 3; this contradicts the assumption, and therefore Q is
reducible. Now Q(x) ≡ x2(x+ 2)2 mod 3 and Hensel’s lemma implies that
Q factors in the form

(6.1) Q(x) = (x2 + γ1x+ γ0)(x
2 + β1x+ β0)

with γj , βj ∈ Z3. The polynomials are chosen so that

(6.2) x2 + γ1x+ γ2 ≡ x2 mod 3 and x2 + β1x+ β2 ≡ x2 + x+ 1 mod 3.

A direct application of Hensel’s lemma gives the expansions

γ0 = p+ p2 + p3 + 2p4 + 2p7 + 2p9 + · · ·
γ1 = 2p2 + 2p3 + p4 + p7 + 2p8 + · · ·
β0 = 1 + 2p+ 2p2 + p3 + 2p4 + p5 + p6 + p7 + · · ·
β1 = 1 + p2 + p4 + 2p5 + 2p6 + p7 + 2p9 + · · · ,
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with p = 3. The reader can now check that V3(Q1) has period length 3 and
V3(Q2) has period length 9. It follows that V3(Q) is periodic with period
length 9, and the fundamental period is 1, 2, 0, 1, 3, 0, 1, 2, 0.

The final examples show how Theorem 5.2 and Theorem 5.3 work in the
more general setting of a number field.

Example 6.3. Consider the number field K = Q( 3
√

2) and its ring of inte-
gers Z[ 3

√
2]. Choose the prime ideal p = ( 3

√
2) and π = 3

√
2. Observe that π

lies above the rational prime 2. Let Q(x) = x2 − 384 = x2 − 27 · 3. In this
case, α = 21, β = 10, and n0 = 0. Theorem 5.3 implies that

(6.3) νπ(Q(n)) =

{
2 νπ(n) if n 6≡ 0 mod π11

21 if n ≡ 0 mod π11.

Using the fact that e = νπ(2) = 3, then equation (6.3) can be written as

(6.4) νπ(Q(n)) =



0 if n ≡ 1 mod 2

6 if n ≡ 2 mod 4

12 if n ≡ 4 mod 8

18 if n ≡ 8 mod 16

21 if n ≡ 0 mod 16.

Finally, Theorem 5.2 implies that the period length is given by 2dα/(ed)e =
2d21/6e = 16. Indeed, the fundamental period of this sequence is

21, 0, 6, 0, 12, 0, 6, 0, 18, 0, 6, 0, 12, 0, 6, 0.

The fundamental period of V2(Q) is

7, 0, 2, 0, 4, 0, 2, 0, 6, 0, 2, 0, 4, 0, 2, 0.

The next example deals with the case when the values of n are chosen
from a subring A different from Z.

Example 6.4. Consider the same number field K = Q( 3
√

2), but now choose
the prime ideal p = (1 + 3

√
2) with uniformizer π = 1 + 3

√
2. Note that

π3 = 3 + 3
3
√

2 + 3(
3
√

2)2 = 3(1 +
3
√

2 +
3
√

4).

Let u = 1 + 3
√

2 + 3
√

4 and v = 3
√

2− 1 and observe that

uv = (1 +
3
√

2 +
3
√

4)(
3
√

2− 1) = 1,

thus u and v are units. This implies that 3 = vπ3 and therefore O/πO = F3.
Consider the polynomial Q(x) = x2 − π5 ∈ (Z[ 3

√
2])[x]. Observe that in

this case, the subring A ⊆ O from Theorem 5.3 is A = Z[ 3
√

2]. For this
polynomial, α = 5, β = 2, and n0 = 0. Theorem 5.3 implies

(6.5) νπ(Q(n)) =

{
2 νπ(n) if n 6≡ 0 mod π3

5 if n ≡ 0 mod π3.
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This equation can be simplified to

(6.6) νπ(Q(n)) =


0 if n ≡ 1, 2 mod π

2 if n ≡ π, 2π mod π2

4 if n ≡ π2, 2π2 mod π3

5 if n ≡ 0 mod π3.

If n is restricted to the subring Z ⊆ A, then

(6.7) νπ(Q(n)) =

{
0 if n ≡ 1, 2 mod 3

5 if n ≡ 0 mod 3.

In this case, the period length is clearly 3.
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